Transcribe audio using Whisper from OpenAI.
Translate audio using Whisper and DeepL translator.
Generate captions using VTT or SRT file formats.
Introducing Whisper (OpenAI Blog)
🇪🇸 VĂdeo sobre Whisper (Dot CSV)
Open AudioToText in Google Colab and follow the step-by-step instructions.
A Cloud GPU will be assigned to you to run the notebook code to transcribe and translate your audio files.
If you want to run the code in your own computer check local installation.
-
Translate the transcriptions using DeepL translator.
-
Save transcriptions and captions in different formats: TXT, VTT, SRT, TSV and JSON.
-
Choose between open-source models or API.
There are several examples in the examples folder.
task
: Transcribe
language
: English
Audio transcription from almost any language using Whisper
task
: Transcribe
language
: Auto-Detect
or select the source language of your audio file
Supported source languages by Whisper
Afrikaans
Albanian
Amharic
Arabic
Armenian
Assamese
Azerbaijani
Bashkir
Basque
Belarusian
Bengali
Bosnian
Breton
Bulgarian
Burmese
Castilian
Catalan
Chinese
Croatian
Czech
Danish
Dutch
English
Estonian
Faroese
Finnish
Flemish
French
Galician
Georgian
German
Greek
Gujarati
Haitian
Haitian Creole
Hausa
Hawaiian
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Italian
Japanese
Javanese
Kannada
Kazakh
Khmer
Korean
Lao
Latin
Latvian
Letzeburgesch
Lingala
Lithuanian
Luxembourgish
Macedonian
Malagasy
Malay
Malayalam
Maltese
Maori
Marathi
Moldavian
Moldovan
Mongolian
Myanmar
Nepali
Norwegian
Nynorsk
Occitan
Panjabi
Pashto
Persian
Polish
Portuguese
Punjabi
Pushto
Romanian
Russian
Sanskrit
Serbian
Shona
Sindhi
Sinhala
Sinhalese
Slovak
Slovenian
Somali
Spanish
Sundanese
Swahili
Swedish
Tagalog
Tajik
Tamil
Tatar
Telugu
Thai
Tibetan
Turkish
Turkmen
Ukrainian
Urdu
Uzbek
Valencian
Vietnamese
Welsh
Yiddish
Yoruba
task
: Translate to English
language
: Auto-Detect
or select the source language of your audio file
Audio translation using DeepL translator
Translation to other languages than English is not supported by Whisper.
However, as an alternative you can use DeepL API to translate the transcription to another language.
task
: Transcribe
language
: Auto-Detect
or select the source language of your audio file *
Supported source languages by DeepL
Bulgarian
Chinese
Czech
Danish
Dutch
English
Estonian
Finnish
French
German
Greek
Hungarian
Indonesian
Italian
Japanese
Korean
Latvian
Lithuanian
Norwegian
Polish
Portuguese
Romanian
Russian
Slovak
Slovenian
Spanish
Swedish
Turkish
Ukrainian
* If the source language of your audio file is supported by Whisper but not supported by DeepL you can use the Translate to English
task to generate an English transcription first and translate that to your desired target language using DeepL.
deepl_api_key
: Your DeepL API key generated after registering for a DeepL Developer Account.
deepl_target_language
: Select your desired language
Available target languages by DeepL
Bulgarian
Chinese (simplified)
Czech
Danish
Dutch
English (American)
English (British)
Estonian
Finnish
French
German
Greek
Hungarian
Indonesian
Italian
Japanese
Korean
Latvian
Lithuanian
Norwegian
Polish
Portuguese (Brazilian)
Portuguese (European)
Romanian
Russian
Slovak
Slovenian
Spanish
Swedish
Turkish
Ukrainian
The DeepL API has a free quota of 500,000 characters per month.
If you exceed your free quota you can upgrade to DeepL API Pro or try using the Free Translator Files web feature uploading the generated transcripts.
See this example with audio transcriptions in different languages using Whisper and translation to spanish using DeepL.
output_formats
: Select the desired transcript formats (comma-separated)
Available formats: txt, vtt, srt, tsv, json
txt
is recommended to read a transcription.
vtt
or srt
are recommended to add captions to an audio or video.
Transcript files will be located in the audio_transcription
folder.
If you use VLC to play video or audio files, you can add your vtt
or srt
transcripts as captions by drag-and-drop the transcript file to the media player or go to Subtitles -> Add Subtitle File.
With audio-only files you will need to enable a visualization in Audio -> Visualizations.
If you have a powerful computer with GPU hardware acceleration, you can run the notebook or CLI in your local machine.
You can also use them locally without a powerful GPU using API, as it always runs in the cloud.
CPU execution is also available, but it is much slower and the Colab version or API is recommended if you do not have a decent GPU.
You might, however, try to use the smaller models (tiny
, base
, small
) on your CPU.
A plain python script is available to use in your system without Jupyter.
- Clone this repository or download the
audiototext.py
script (right-click -> Save as...). - Install Python (3.8 - 3.10)
- Install
ffmpeg
# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg
# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg
# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg
# on Arch Linux
sudo pacman -S ffmpeg
# Transcribe english.wav using large-v2 model to TXT, VTT, SRT, TSV and JSON formats
python audiototext.py examples/english/english.wav --model large-v2 --output_dir audio_transcription
# Translate french.wav from French to English using small model to TXT format
python audiototext.py examples/french-to-english/french.wav --task translate --language French --output_format txt
# Transcribe english_japanese.mp3 using API to TXT, VTT and SRT formats
python audiototext.py examples/multi-language/english_japanese.mp3 --output_formats txt,vtt,srt --api_key sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
# Transcribe multiple files using Whisper large-v2 model and then translate the generated transcripts to Spanish using DeepL API to TXT, VTT and SRT formats
python audiototext.py chinese.wav bruce.mp3 english_japanese.mp3 french.wav --model large-v2 --output_formats txt,vtt,srt --deepl_target_language Spanish --deepl_api_key xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx:xx
# See all available options
python audiototext.py -h
positional arguments:
audio_file source file to transcribe
optional arguments:
-h, --help show this help message and exit
--task {transcribe,translate}
transcribe (default) or translate (to English)
--model {tiny,base,small,medium,large-v1,large-v2}
model to use (default: small)
--language {Auto-Detect,Afrikaans,Albanian,Amharic,Arabic,Armenian,Assamese,Azerbaijani,Bashkir,Basque,Belarusian,Bengali,Bosnian,Breton,Bulgarian,Burmese,Castilian,Catalan,Chinese,Croatian,Czech,Danish,Dutch,English,Estonian,Faroese,Finnish,Flemish,French,Galician,Georgian,German,Greek,Gujarati,Haitian,Haitian Creole,Hausa,Hawaiian,Hebrew,Hindi,Hungarian,Icelandic,Indonesian,Italian,Japanese,Javanese,Kannada,Kazakh,Khmer,Korean,Lao,Latin,Latvian,Letzeburgesch,Lingala,Lithuanian,Luxembourgish,Macedonian,Malagasy,Malay,Malayalam,Maltese,Maori,Marathi,Moldavian,Moldovan,Mongolian,Myanmar,Nepali,Norwegian,Nynorsk,Occitan,Panjabi,Pashto,Persian,Polish,Portuguese,Punjabi,Pushto,Romanian,Russian,Sanskrit,Serbian,Shona,Sindhi,Sinhala,Sinhalese,Slovak,Slovenian,Somali,Spanish,Sundanese,Swahili,Swedish,Tagalog,Tajik,Tamil,Tatar,Telugu,Thai,Tibetan,Turkish,Turkmen,Ukrainian,Urdu,Uzbek,Valencian,Vietnamese,Welsh,Yiddish,Yoruba}
source file language (default: Auto-Detect)
--prompt PROMPT provide context about the audio or encourage a specific writing style, see https://platform.openai.com/docs/guides/speech-to-text/prompting
--coherence_preference {True,False}
True (default): More coherence, but may repeat text. False: Less repetitions, but may have less coherence
--api_key API_KEY if set with your OpenAI API Key (https://platform.openai.com/account/api-keys), the OpenAI API is used, which can improve the inference speed substantially, but it has an associated cost, see API pricing: https://openai.com/pricing#audio-models.
API model is large-v2 (ignores --model)
--output_formats OUTPUT_FORMATS, --output_format OUTPUT_FORMATS
desired result formats (default: txt,vtt,srt,tsv,json)
--output_dir OUTPUT_DIR
folder to save results (default: audio_transcription)
--deepl_api_key DEEPL_API_KEY
DeepL API key, if you want to translate results using DeepL. Get a DeepL Developer Account API Key: https://www.deepl.com/pro-api
--deepl_target_language {Bulgarian,Chinese,Chinese (simplified),Czech,Danish,Dutch,English,English (American),English (British),Estonian,Finnish,French,German,Greek,Hungarian,Indonesian,Italian,Japanese,Korean,Latvian,Lithuanian,Norwegian,Polish,Portuguese,Portuguese (Brazilian),Portuguese (European),Romanian,Russian,Slovak,Slovenian,Spanish,Swedish,Turkish,Ukrainian}
results target language if you want to translate results using DeepL (--deepl_api_key required)
--deepl_coherence_preference {True,False}
True (default): Share context between lines while translating. False: Translate each line independently
--deepl_formality {default,formal,informal}
whether the translated text should lean towards formal or informal language (languages with formality supported: German,French,Italian,Spanish,Dutch,Polish,Portuguese,Russian)
--skip-install skip pip dependencies installation
Google Colab lets you connect to a local runtime using Jupyter. This allows you to use the notebook using your local hardware and have access to your local file system.
How to set up and connect to a local runtime in Google Colab
Using Jupyter Notebook
If you do not want to rely on Google Colab or use the AudioToText CLI, you can use the Jupyter Notebook interface.
How to install Jupyter Notebook
Clone or download this repository and run inside this repository folder:
jupyter notebook AudioToText.ipynb
Or just run jupyter notebook
without cloning this repository and Upload the AudioToText.ipynb
file (right-click -> Save as...).
Using Jupyter Lab
An alternative to the Jupyter Notebook interface is the Jupyter Lab interface.
jupyter lab
Open the notebook using a URL:
File -> Open from URL...
https://raw.githubusercontent.com/Carleslc/AudioToText/master/AudioToText.ipynb
Using Whisper CLI
If you do not need Cloud GPU and you do not want to translate using DeepL then you can just use the Whisper CLI in your console as follows:
Install Whisper CLI locally
- Install Python (3.8 - 3.10)
- Install
ffmpeg
- Install Whisper CLI
pip install -U openai-whisper
# Transcribe english.wav using large-v2 model to TXT, VTT, SRT, TSV and JSON formats
whisper english.wav --model large-v2 --output_dir audio_transcription --output_format all
# Translate french.wav from French to English using small model to TXT format
whisper french.wav --task translate --language French --output_dir audio_transcription --output_format txt
# Transcribe multiple files using large-v2 model to TXT, VTT, SRT, TSV and JSON formats
whisper chinese.wav bruce.mp3 english_japanese.mp3 french.wav --model large-v2 --output_dir audio_transcription
# See all available options
whisper --help