We are building a python library of procedural dataset generators and algorithmically verifiable reasoning environments for training Reasoning Models with reinforcement learning (RL).
The goal is to generate virtually infinite data with adjustable complexity.
Example:
import reasoning_gym
data = reasoning_gym.create_dataset('leg_counting', size=10, seed=42)
for i, x in enumerate(data):
print(f'{i}: q="{x['question']}", a="{x['answer']}"')
print('metadata:', x['metadata'])
Output:
0: q="How many legs are there in total if you have 1 sea slug, 1 deer?", a="4"
metadata: {'animals': {'sea slug': 1, 'deer': 1}, 'total_legs': 4}
1: q="How many legs are there in total if you have 2 sheeps, 2 dogs?", a="16"
metadata: {'animals': {'sheep': 2, 'dog': 2}, 'total_legs': 16}
2: q="How many legs are there in total if you have 1 crab, 2 lobsters, 1 human, 1 cow, 1 bee?", a="42"
...
Available dataset names (which can be used with create_dataset()
):
'polynomial_equations',
'simple_equations',
'base_conversion',
'caesar_cipher',
'letter_counting',
'number_filtering',
'number_sorting',
'word_reversal',
'basic_arithmetic',
'chain_sum',
'fraction_simplification',
'gcd',
'lcm',
'leg_counting',
'prime_factorization',
'color_cube_rotation',
'number_sequence',
'countdown',
'maze',
'mini_sudoku',
'sudoku',
'family_relationships',
'propositional_logic',
'syllogism'
SimpleEquationsDataset
: Generate linear equations with one variable to solve (e.g. "3*x + 2 = 14")PolynomialEquationsDataset
: Generate polynomial equations with one variable to solve (e.g. "-6h**4 + 4h*2 - 5h = 0")
BasicArithmeticDataset
: Generate arithmetic expressions with configurable complexity and operators (+, -, *, /)ChainSum
: Generate addition/subtraction chains with configurable length and digit countsFractionSimplificationDataset
: Generate fraction simplification tasks with configurable complexityGCDDataset
: Generate Greatest Common Divisor problems with configurable number of integersLCMDataset
: Generate Least Common Multiple problems with configurable number of integersLegCountingDataset
: Generate animal leg counting word problems with various animalsPrimeFactorizationDataset
: Generate prime factorization tasks with configurable number ranges
BaseConversionDataset
: Convert numbers between different bases (binary, hex, etc.)CaesarCipherDataset
: Encrypt/decrypt text using Caesar cipher with configurable rotationLetterCountingDataset
: Count letter occurrences in text spansNumberFilteringDataset
: Filter numbers based on comparison with thresholdNumberSortingDataset
: Sort lists of numbers in ascending or descending orderLetterJumbleDataset
: Unscramble words that have had their letters randomly jumbledWordReversalDataset
: Reverse word order in text spans
NumberSequenceDataset
: Generate number sequences with discoverable patternsColorCubeRotationDataset
: Generate 3D spatial reasoning tasks with colored cube rotations and orientation tracking
PropositionalLogicDataset
: Generate propositional logic reasoning problems
FamilyRelationshipsDataset
: Generate family relationship reasoning tasks with family trees
SudokuDataset
: Generate 9x9 Sudoku puzzles with configurable number of empty cellsMiniSudokuDataset
: Generate 4x4 Mini Sudoku puzzles with configurable difficultyMazeDataset
: Generates a maze with a start and a goalCountdownDataset
: Generate number game tasks where numbers and operators must be combined to reach a target value
Generate polynomial equation with configurable complexity:
from reasoning_gym.algebra import PolynomialEquationsConfig, PolynomialEquationsConfig
config = PolynomialEquationsConfig(
min_terms=3,
max_terms=4,
min_degree=4,
max_degree=4,
min_value=1,
max_value=5,
size=3,
seed=123,
)
dataset = PolynomialEquationsDataset(config)
for item in dataset:
print(item)
Example output:
{'question': 'Find the real value(s) of b in the equation: b**4 - b**3 - 5*b**2 = 0', 'answer': '[-1.79128784747792, 0.0, 2.79128784747792]', 'metadata': {'polynomial_expr': 'b**4 - b**3 - 5*b**2', 'variable': 'b', 'degree': 4, 'real_solutions': [-1.79128784747792, 0.0, 2.79128784747792]}}
{'question': 'Solve the polynomial equation for real i:\n3*i**4 + 4*i**3 - 1 = 0', 'answer': '[]', 'metadata': {'polynomial_expr': '3*i**4 + 4*i**3 - 1', 'variable': 'i', 'degree': 4, 'real_solutions': []}}
{'question': 'Solve the polynomial equation for real h:\n7*h**4 - 2*h**2 + h = 0', 'answer': '[-0.6998793469266564, 0.0]', 'metadata': {'polynomial_expr': '7*h**4 - 2*h**2 + h', 'variable': 'h', 'degree': 4, 'real_solutions': [-0.6998793469266564, 0.0]}}
Generates arithmetic problems with configurable complexity:
from reasoning_gym.arithmetic import BasicArithmeticDataset, BasicArithmeticDatasetConfig
config = BasicArithmeticDatasetConfig(
min_terms=2, # Minimum number of terms in expression
max_terms=4, # Maximum number of terms
min_digits=1, # Minimum digits per number
max_digits=2, # Maximum digits per number
allow_parentheses=True, # Include nested expressions
size=5, # Number of problems to generate
seed=42 # For reproducibility
)
dataset = BasicArithmeticDataset(config)
for item in dataset:
print(item)
Example output:
{'question': '-1 + -5 * 8 + -8 =', 'answer': '-49', 'metadata': {'num_terms': 4, 'num_digits': 1, 'expression': '-1 + -5 * 8 + -8'}}
{'question': '19 - 17 =', 'answer': '2', 'metadata': {'num_terms': 2, 'num_digits': 2, 'expression': '19 - 17'}}
{'question': '3 + -6 * -9 =', 'answer': '57', 'metadata': {'num_terms': 3, 'num_digits': 1, 'expression': '3 + -6 * -9'}}
{'question': '-22 - -94 + -97 =', 'answer': '-25', 'metadata': {'num_terms': 3, 'num_digits': 2, 'expression': '-22 - -94 + -97'}}
{'question': '51 * 63 =', 'answer': '3213', 'metadata': {'num_terms': 2, 'num_digits': 2, 'expression': '51 * 63'}}
Generates addition/subtraction problems with configurable complexity:
from reasoning_gym.arithmetic import ChainSum, ChainSumConfig
config = ChainSumConfig(
min_terms=2, # Minimum numbers to add/subtract
max_terms=6, # Maximum numbers
min_digits=1, # Minimum digits per number
max_digits=4, # Maximum digits per number
allow_negation=True, # Allow negative numbers
size=5, # Number of problems
seed=42 # For reproducibility
)
dataset = ChainSum(config)
for item in dataset:
print(item)
Example data:
{
"question": "426 + 562 =",
"answer": "988",
"metadata": { "num_terms": 2, "num_digits": 3, "expression": "426 + 562" },
}
{
"question": "426 + 562 =",
"answer": "988",
"metadata": { "num_terms": 2, "num_digits": 3, "expression": "426 + 562" }
}
Generates number sequence completion tasks with dynamic pattern generation:
from reasoning_gym.cognition import NumberSequenceDataset, NumberSequenceConfig
config = NumberSequenceConfig(
min_terms=4, # Minimum visible terms
max_terms=8, # Maximum visible terms
min_value=-100, # Minimum allowed number
max_value=100, # Maximum allowed number
max_complexity=3, # Maximum operations to combine
size=5, # Number of sequences
seed=42 # For reproducibility
)
dataset = NumberSequenceDataset(config)
for item in dataset:
print(item)
Example data:
{
"question": "3, 6, 12, 24, 48, 96, 192, 384, ?",
"answer": "768",
"metadata": {"rule": "double", "complexity": 3, "sequence": [3, 6, 12, 24, 48, 96, 192, 384, 768]},
}
{
"question": "8, 14, 20, 26, 32, 38, 44, ?",
"answer": "50",
"metadata": {"rule": "add 6", "complexity": 1, "sequence": [8, 14, 20, 26, 32, 38, 44, 50]},
}
Generates 3D spatial reasoning tasks with cube rotations and color tracking:
from reasoning_gym.cognition import ColorCubeRotationDataset, ColorCubeRotationConfig
config = ColorCubeRotationConfig(
min_rotations=1, # Minimum number of rotations
max_rotations=3, # Maximum number of rotations
size=5, # Number of problems to generate
seed=42 # For reproducibility
)
dataset = ColorCubeRotationDataset(config)
for item in dataset:
print(item)
Example data:
{
"question": "A cube has:\n- a red top side\n- a blue right side\n- a green front side\n- a yellow left side\n- a white back side\n- an orange bottom side\n\nThe cube is rotated so that the side which was before at the front is now at the top.\nThe cube is rotated so that the side which was before at the right is now at the top.\n\nWhat is now the color of the bottom side of the cube?",
"answer": "yellow",
"metadata": {
"initial_state": {"top": "red", "right": "blue", "front": "green", "left": "yellow", "back": "white", "bottom": "orange"},
"rotations": ["front", "right"],
"target_side": "bottom",
"num_rotations": 2
}
}
Generates logical reasoning tasks with configurable complexity:
from reasoning_gym.logic import PropositionalLogicDataset, PropositionalLogicConfig
config = PropositionalLogicConfig(
min_vars=2, # Minimum number of variables
max_vars=4, # Maximum number of variables
min_statements=2, # Minimum number of given statements
max_statements=4, # Maximum number of statements
max_complexity=3, # Maximum operator depth
size=5, # Number of problems to generate
seed=42 # For reproducibility
)
dataset = PropositionalLogicDataset(config)
for item in dataset:
print(item)
Example data:
{
"question": "Given:\n1. R\n2. Q\nWhat can we conclude?",
"answer": "(P ∨ Q)",
"metadata": {"premises": ["R", "Q"], "variables": ["P", "Q", "R", "S"], "complexity": 3},
}
{
"question": "Given:\n1. ((Q → P) ∨ (Q → P))\n2. ((Q ↔ Q) → (P → P))\n3. P\nWhat can we conclude?",
"answer": "(P → P)",
"metadata": {
"premises": ["((Q → P) ∨ (Q → P))", "((Q ↔ Q) → (P → P))", "P"],
"variables": ["P", "Q"],
"complexity": 3,
},
}
Generates a maze with configurable difficulty:
from reasoning_gym.games import MazeConfig, MazeDataset
config = MazeConfig(
min_dist=3,
max_dist=5,
min_grid_size=5,
max_grid_size=5,
size=2,
seed=4,
)
dataset = MazeDataset(config)
for item in dataset:
print()
print(item["question"])
print(item)
Example data:
Navigate from 'd' (start) to '}' (goal):
uuuuu
uCCdu
uCCCu
uu}Cu
uuuuu
Legend: 'u' = Wall, 'C' = Path
{'question': "Navigate from 'd' (start) to '}' (goal):\n\nuuuuu\nuCCdu\nuCCCu\nuu}Cu\nuuuuu\nLegend: 'u' = Wall, 'C' = Path\n", 'answer': '3', 'metadata': {'grid_size': 5, 'grid': ['uuuuu', 'uCCdu', 'uCCCu', 'uu}Cu', 'uuuuu'], 'shortest_path_length': 3, 'start': 'd', 'goal': '}', 'wall': 'u', 'path': 'C'}}
Navigate from 'J' (start) to '_' (goal):
<<<<<
<<J<<
<www<
<<w_<
<<<<<
Legend: '<' = Wall, 'w' = Path
{'question': "Navigate from 'J' (start) to '_' (goal):\n\n<<<<<\n<<J<<\n<www<\n<<w_<\n<<<<<\nLegend: '<' = Wall, 'w' = Path\n", 'answer': '3', 'metadata': {'grid_size': 5, 'grid': ['<<<<<', '<<J<<', '<www<', '<<w_<', '<<<<<'], 'shortest_path_length': 3, 'start': 'J', 'goal': '_', 'wall': '<', 'path': 'w'}}
- More complex math tasks (algebra, geometry)
- Algorithmic tasks (counting, sorting, re-ordering)
- Logic riddles
- Logic inductive programming tasks
- ARC-AGI synthetic riddles
If you have ideas for additional procedural dataset generators please create an issue here or contact us in the #arc-agi-2
channel of the GPU-Mode discord server.