-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
417 lines (403 loc) · 17.9 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import torch.nn as nn
import os
import numpy as np
from torch.utils.data import (
SequentialSampler,
DataLoader,
)
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
Blip2QFormerConfig,
)
from metadata import (
TASKS,
CTA,
DSP,
TOTAL_SUM,
BASE,
GENE_VOCAB_DIR,
CELL_LABEL,
RESPONSE_LABEL,
SEED,
OPTION_DIR,
OPTION_FILE_NAME,
MODEL_PARAMETERS,
)
import json
from data_utils import TextCellDataset, TextCellCollator
from mmllm import prepare_cell_text_llm
from mmllm.module import (
Generator,
CellTextLLM,
SCQFormer,
)
from scvi.utils import init_library_size
from scipy.sparse import csr_matrix
import torch
import scanpy as sc
import anndata
import pickle
from sklearn.decomposition import TruncatedSVD
from metrics import (
compute_biased_mmd_rbf,
measure_bio_preservation,
measure_simulation,
measure_classification_accuracy_text,
measure_classification_f1_score_text,
)
from copy import deepcopy
from collections import defaultdict
from utils import str2bool, parse_parameters
from umap import UMAP
from tqdm import tqdm
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--best_model_path", required=True, type=str, help="the file name of the best model")
parser.add_argument("--task_type", required=True, type=str, help="the type of task")
parser.add_argument("--output_path_suffix", default="all-outputs", type=str, help="the suffix of the output path")
parser.add_argument("--device_id", default=0, type=int, help="The id of gpu to use")
parser.add_argument("--modality_tag", default="CELL", type=str, help="the name of added modality")
parser.add_argument("--num_signal_tokens", default=1, type=int, help="the number of signal tokens")
parser.add_argument("--gene_vocab_file_name", default="gene_vocab.npy", type=str, help="the gene vocabulary file name")
parser.add_argument(
"--force_gene_symbol_uppercase",
default=False,
type=str2bool,
help="whether to force gene symbols to be uppercase or not"
)
parser.add_argument(
"--no_extra_output_ratio",
default=1.0,
type=float,
help="the ratio of test samples without extra text outputs"
)
parser.add_argument("--provide_choices", default=None, type=str2bool, help="whether to provide choices or not")
parser.add_argument("--unify_gene", default=True, type=str2bool, help="whether to unify gene symbols or not")
parser.add_argument("--template_dir_name", default=None, type=str, help="the directory of evaluation templates")
parser.add_argument("--batch_size", default=128, type=int, help="the batch size of the dataloader")
parser.add_argument(
"--evaluate_single_prompt",
default=False,
type=str2bool,
help="whether to evaluate a single prompt or not"
)
parser.add_argument(
"--num_single_prompt",
default=20,
type=int,
help="the number of single prompts to evaluate"
)
args = parser.parse_args()
modality_tag = args.modality_tag
num_signal_tokens = args.num_signal_tokens
task_type = args.task_type
force_gene_symbol_uppercase = args.force_gene_symbol_uppercase
no_extra_output_ratio = args.no_extra_output_ratio
provide_choices = args.provide_choices
unify_gene = args.unify_gene
random_state = np.random.default_rng(SEED)
model_parameters = parse_parameters(MODEL_PARAMETERS)
model_path = model_parameters["language_model"]["model_path"]
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
is_encoder_decoder = model.config.is_encoder_decoder
gene_vocab = np.load(os.path.join(GENE_VOCAB_DIR, args.gene_vocab_file_name)) if unify_gene else None
if tokenizer.pad_token_id is None:
tokenizer.pad_token = tokenizer.eos_token
ignore_index = -100 if not hasattr(model.config, "ignore_index") else None
pad_token_id = tokenizer.pad_token_id if not hasattr(model.config, "pad_token_id") else None
template_dir_name = args.template_dir_name
assert task_type in TASKS, f"Task type {task_type} is not supported."
dataset = TextCellDataset(
dir_name=TASKS[task_type],
tokenizer=tokenizer,
task_type=task_type,
template_dir_name=template_dir_name,
split="test",
gene_vocab=gene_vocab,
modality=modality_tag,
num_signal_tokens=num_signal_tokens,
force_gene_symbol_uppercase=force_gene_symbol_uppercase,
provide_choices=provide_choices,
no_extra_output_ratio=no_extra_output_ratio,
is_encoder_decoder=is_encoder_decoder,
random_state=random_state,
)
count_matrix = dataset.count_data.X
count_dim = count_matrix.shape[1]
# CVAE
condition_input_dim = model_parameters["feature_decoder"]["condition_input_dim"]
use_layer_norm = model_parameters["feature_decoder"]["use_layer_norm"]
use_batch_norm = model_parameters["feature_decoder"]["use_batch_norm"]
n_latent = model_parameters["feature_decoder"]["n_latent"]
# if True, the library size is used as an observed covariate
use_observed_lib_size = False
# to inject the conditional embedding into the encoder
encode_covariates = True
deeply_inject_covariates = False
log_variational = model_parameters["feature_decoder"]["log_variational"]
n_layers = model_parameters["feature_decoder"]["n_layers"]
n_hidden = model_parameters["feature_decoder"]["n_hidden"]
dropout_rate = model_parameters["feature_decoder"]["dropout_rate"]
adaptive_library = model_parameters["feature_decoder"]["adaptive_library"]
library_log_means, library_log_vars = init_library_size(count_matrix)
best_model_path = args.best_model_path
is_q_former_encoder = model_parameters["feature_encoder"]["is_q_former_encoder"]
if is_q_former_encoder:
cross_attention_frequency = model_parameters["feature_encoder"]["cross_attention_frequency"]
num_hidden_layers = model_parameters["feature_encoder"]["num_hidden_layers"]
config = Blip2QFormerConfig(
vocab_size=0,
hidden_size=model.config.hidden_size,
hidden_dropout_prob=model_parameters["feature_encoder"]["hidden_dropout_prob"],
num_hidden_layers=num_hidden_layers,
num_attention_heads=model.config.num_attention_heads,
intermediate_size=model.config.hidden_size * 4,
pad_token_id=model.config.pad_token_id,
cross_attention_frequency=cross_attention_frequency,
encoder_hidden_size=model.config.hidden_size,
)
num_key_value_tokens = model_parameters["feature_encoder"]["num_key_value_tokens"]
num_blocks = model_parameters["feature_encoder"]["num_blocks"]
num_query_tokens = model_parameters["feature_encoder"]["num_query_tokens"]
feature_encoder = SCQFormer(
count_dim,
num_query_tokens,
num_key_value_tokens,
config,
num_hidden_layers=num_blocks,
)
else:
feature_encoder = nn.Sequential(
nn.Linear(count_dim, (count_dim + model.config.hidden_size) // 2),
nn.GELU(),
nn.Linear((count_dim + model.config.hidden_size) // 2, model.config.hidden_size),
nn.Dropout(model_parameters["feature_encoder"]["hidden_dropout_prob"]),
)
feature_decoder = Generator(
count_dim,
condition_dim=model.config.hidden_size,
condition_input_dim=condition_input_dim,
n_layers=n_layers,
n_hidden=n_hidden,
n_latent=n_latent,
dropout_rate=dropout_rate,
use_layer_norm=use_layer_norm,
use_batch_norm=use_batch_norm,
encode_covariates=encode_covariates,
deeply_inject_covariates=deeply_inject_covariates,
log_variational=log_variational,
adaptive_library=adaptive_library,
use_observed_lib_size=use_observed_lib_size,
library_log_means=library_log_means,
library_log_vars=library_log_vars,
)
model, tokenizer = prepare_cell_text_llm(
model,
tokenizer,
modality_tag=modality_tag,
num_signal_tokens=num_signal_tokens,
ignore_index=ignore_index,
pad_token_id=pad_token_id,
pad_to_multiple_of=8,
)
collator = TextCellCollator(
tokenizer,
pad_to_multiple_of=8,
model=model,
)
batch_size = args.batch_size
mm_model = CellTextLLM(
model,
tokenizer,
feature_encoder=feature_encoder,
feature_decoder=feature_decoder
)
device_id = args.device_id
mm_model.load_state_dict(torch.load(best_model_path, map_location="cpu"))
mm_model = mm_model.to(f"cuda:{device_id}")
# close the dropout layers in feature encoder
mm_model.eval()
# ground truth
test_adata = dataset.count_data.copy()
# if we evaluate a single prompt's performance across all test samples
if args.evaluate_single_prompt:
templates = dataset.templates[: args.num_single_prompt]
else:
templates = np.array(['#'])
all_outputs = defaultdict(lambda: defaultdict(list))
dataset_sources = np.unique(test_adata.obs["_source"].values)
if task_type in [CTA, DSP]:
if task_type == CTA:
targets = test_adata.obs[CELL_LABEL].values
else:
targets = test_adata.obs[RESPONSE_LABEL].values.astype(str)
choices_path = os.path.join(OPTION_DIR, OPTION_FILE_NAME)
with open(choices_path, "rb") as f:
choices = pickle.load(f)
choices = {source: choices.get(source) for source in dataset_sources}
for template_id, template in enumerate(tqdm(templates)):
if template == '#':
dataloader = DataLoader(
dataset,
batch_size=batch_size,
collate_fn=collator,
num_workers=8,
sampler=SequentialSampler(dataset),
)
else:
dataset_copy = deepcopy(dataset)
# we just simply replace the templates in the dataset
dataset_copy.templates[:] = template
dataloader = DataLoader(
dataset_copy,
batch_size=batch_size,
collate_fn=collator,
num_workers=8,
sampler=SequentialSampler(dataset_copy),
)
res = []
pointer = 0
for batch in dataloader:
batch = {
key: value.to(device=next(mm_model.parameters()).device) if value is not None else value for key, value in batch.items()
}
# greedy decoding
outputs = mm_model.generate(
batch["input_ids"],
batch["input_counts"],
do_sample=False,
max_new_tokens=512,
)
if no_extra_output_ratio == 1.0:
res.append(np.array(outputs["texts"]))
else:
output_instances = outputs["texts"]
input_instances = tokenizer.batch_decode(batch["input_ids"], skip_special_tokens=True)
# remove the prefix and suffix of the input instances
input_instances = [input_instance[6: -11] for input_instance in input_instances]
# save results in the format supported by xFinder
for index in range(len(output_instances)):
source = test_adata.obs["_source"].values[pointer]
res.append(
{
"question": input_instances[index],
"llm_output": output_instances[index],
"model_name": "InstructCell",
"key_answer_type": "categorical label",
"correct_answer": targets[pointer],
"dataset": source,
"standard_answer_range": choices[source],
}
)
pointer += 1
if no_extra_output_ratio == 1.0:
res = np.concatenate(res, axis=0)
for source in dataset_sources:
source_mask = test_adata.obs["_source"] == source
metric_dict = {
"accuracy": measure_classification_accuracy_text(res[source_mask], targets[source_mask]),
"average_f1": measure_classification_f1_score_text(res[source_mask], targets[source_mask], average="macro"),
"weighted_f1": measure_classification_f1_score_text(res[source_mask], targets[source_mask], average="weighted"),
}
for metric_name in metric_dict:
all_outputs[source][metric_name].append(metric_dict[metric_name])
else:
source_outputs = {
key: [] for key in choices
}
for item in res:
source_outputs[item["dataset"]].append(item)
for source in source_outputs:
all_outputs[source][template_id] = source_outputs[source]
else:
dataset_sources = np.unique(test_adata.obs["_source"].values)
sc.pp.normalize_total(test_adata, target_sum=TOTAL_SUM)
sc.pp.log1p(test_adata, base=BASE)
pca = TruncatedSVD(n_components=50, n_iter=20, random_state=SEED)
estimator = UMAP(n_neighbors=40, random_state=SEED)
test_adata.obsm["X_pca"] = pca.fit_transform(test_adata.X)
test_adata.obsm["X_umap"] = estimator.fit_transform(test_adata.obsm["X_pca"])
k_list = [5, 10, 25, 50]
for template in tqdm(templates):
if template == '#':
dataloader = DataLoader(
dataset,
batch_size=batch_size,
collate_fn=collator,
num_workers=8,
sampler=SequentialSampler(dataset),
)
else:
dataset_copy = deepcopy(dataset)
# we just simply replace the templates in the dataset
dataset_copy.templates[:] = template
dataloader = DataLoader(
dataset_copy,
batch_size=batch_size,
collate_fn=collator,
num_workers=8,
sampler=SequentialSampler(dataset_copy),
)
fake_samples = []
for batch in dataloader:
batch = {
key: value.to(device=next(mm_model.parameters()).device) if value is not None else value for key, value in batch.items()
}
outputs = mm_model.generate(
batch["input_ids"],
batch["input_counts"],
do_sample=False,
max_new_tokens=512,
)
fake_samples.append(
np.stack(
[output_cell if output_cell is not None else np.full(test_adata.shape[1], 0.0) for output_cell in outputs["cells"]]
)
)
fake_samples = csr_matrix(np.concatenate(fake_samples, axis=0))
fake_adata = anndata.AnnData(
X=fake_samples,
obs=test_adata.obs,
var=test_adata.var
)
sc.pp.normalize_total(fake_adata, target_sum=TOTAL_SUM)
sc.pp.log1p(fake_adata, base=BASE)
fake_adata.obsm["X_pca"] = pca.transform(fake_adata.X)
fake_adata.obsm["X_umap"] = estimator.transform(fake_adata.obsm["X_pca"])
for source in dataset_sources:
fake_source_adata = fake_adata[fake_adata.obs["_source"].str.startswith(source)]
test_source_adata = test_adata[test_adata.obs["_source"].str.startswith(source)]
metric_dict = {
"MMD": compute_biased_mmd_rbf(
fake_source_adata.obsm["X_umap"],
test_source_adata.obsm["X_umap"],
n_neighbours=25,
),
}
for k in k_list:
for metric_name, func in zip(
[f"sKNN ({k})", f"pKNN ({k})", f"sKNN ({k}) for Real Data"],
[measure_bio_preservation, measure_simulation, measure_bio_preservation]
):
if not metric_name.endswith("Data"):
metric_dict[metric_name] = func(
predictions=fake_source_adata.obsm["X_umap"],
targets=test_source_adata.obsm["X_umap"],
prediction_labels=fake_source_adata.obs[CELL_LABEL].values,
target_labels=test_source_adata.obs[CELL_LABEL].values,
k=k,
)
else:
metric_dict[metric_name] = func(
predictions=test_source_adata.obsm["X_umap"],
prediction_labels=test_source_adata.obs[CELL_LABEL].values,
k=k,
)
for metric_name in metric_dict:
all_outputs[source][metric_name].append(metric_dict[metric_name])
for source in all_outputs:
with open(f"{source}-{args.output_path_suffix}.json", 'w') as f:
json.dump(all_outputs[source], f, indent=4)