forked from zzh8829/yolov3-tf2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetect.py
106 lines (89 loc) · 4.26 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import time
from absl import app, flags, logging
from absl.flags import FLAGS
import cv2
import numpy as np
import tensorflow as tf
from yolov3_tf2.models import (
YoloV3, YoloV3Tiny
)
from yolov3_tf2.dataset import transform_images, load_tfrecord_dataset
from yolov3_tf2.utils import draw_outputs
import zetane
flags.DEFINE_string('classes', './data/coco.names', 'path to classes file')
flags.DEFINE_string('weights', './checkpoints/yolov3.tf',
'path to weights file')
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_string('image', './data/girl.png', 'path to input image')
flags.DEFINE_string('tfrecord', None, 'tfrecord instead of image')
flags.DEFINE_string('output', './output.jpg', 'path to output image')
flags.DEFINE_integer('num_classes', 80, 'number of classes in the model')
def make_io_panels(zctxt):
input_panel = zctxt.panel('Input', width=0.25, height=0.3, screen_x=0.0, screen_y=0.7, navigation='2d').set_camera(position=(
1, 0.75, 30), aim=(1, 0.75, 0)).set_background_color(rgb=(0.025, 0.02, 0.045)).border(3).set_border_alpha(0.05).update()
output_panel = zctxt.panel('Output', width=0.25, height=0.3, screen_x=0.0, screen_y=0.0, navigation='2d').set_camera(position=(
1, 0.75, 30), aim=(1, 0.75, 0)).set_background_color(rgb=(0.025, 0.02, 0.045)).border(3).set_border_alpha(0.05).update()
zctxt.text("Input").font_size(0.1).position(y=-.45).send_to(input_panel).update()
zctxt.text("Output").font_size(.1).position(y=-.45).send_to(output_panel).update()
return input_panel, output_panel
def main(_argv):
physical_devices = tf.config.experimental.list_physical_devices('GPU')
for physical_device in physical_devices:
tf.config.experimental.set_memory_growth(physical_device, True)
if FLAGS.tiny:
yolo = YoloV3Tiny(classes=FLAGS.num_classes)
else:
yolo = YoloV3(classes=FLAGS.num_classes)
yolo.load_weights(FLAGS.weights).expect_partial()
logging.info('weights loaded')
class_names = [c.strip() for c in open(FLAGS.classes).readlines()]
logging.info('classes loaded')
if FLAGS.tfrecord:
dataset = load_tfrecord_dataset(
FLAGS.tfrecord, FLAGS.classes, FLAGS.size)
dataset = dataset.shuffle(512)
img_raw, _label = next(iter(dataset.take(1)))
else:
img_raw = tf.image.decode_image(
open(FLAGS.image, 'rb').read(), channels=3)
img = tf.expand_dims(img_raw, 0)
img = transform_images(img, FLAGS.size)
ctxt = zetane.Context()
ctxt.clear_universe()
input_panel, output_panel = make_io_panels(ctxt)
image_np = np.transpose(img.numpy(), (1, 2, 3, 0))
to_fit = 0.15 / image_np.shape[2]
zinput = ctxt.image().data(image_np).scale(to_fit, to_fit).send_to(input_panel).update()
zmodel = ctxt.model().keras(yolo).inputs(img.numpy()).update()
t1 = time.time()
#boxes, scores, classes, nums = yolo(img)
bbox, confidence, class_probs, scores = yolo(img)
boxes, scores, classes, nums = tf.image.combined_non_max_suppression(
boxes=tf.reshape(bbox, (tf.shape(bbox)[0], -1, 1, 4)),
scores=tf.reshape(
scores, (tf.shape(scores)[0], -1, tf.shape(scores)[-1])),
max_output_size_per_class=FLAGS.yolo_max_boxes,
max_total_size=FLAGS.yolo_max_boxes,
iou_threshold=FLAGS.yolo_iou_threshold,
score_threshold=FLAGS.yolo_score_threshold
)
t2 = time.time()
logging.info('time: {}'.format(t2 - t1))
logging.info('detections:')
for i in range(nums[0]):
logging.info('\t{}, {}, {}'.format(class_names[int(classes[0][i])],
np.array(scores[0][i]),
np.array(boxes[0][i])))
#out_img = cv2.cvtColor(img_raw.numpy(), cv2.COLOR_RGB2BGR)
out_img = draw_outputs(img_raw.numpy()/225.0, (boxes, scores, classes, nums), class_names)
to_fit = 0.15 / out_img.shape[2]
zoutput = ctxt.image().data(out_img).scale(to_fit, to_fit).send_to(output_panel).update()
#cv2.imwrite(FLAGS.output, img)
#logging.info('output saved to: {}'.format(FLAGS.output))
ctxt.disconnect()
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass