-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_torch.py
125 lines (102 loc) · 3.86 KB
/
test_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import zetane
import glob
from PIL import Image
import numpy as np
import time
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as T
import torchvision.datasets as datasets
import torchvision.models as models
from torchvision.utils import save_image
import zetane as ztn
import zetane.utils as zutils
def main():
normalize = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor(), normalize])
testset = datasets.CocoDetection(root="./cocoapi/images", annFile="./cocoapi/annotations/instances_val2017.json", transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=1, shuffle=False, pin_memory=True)
resnet = models.resnet18(pretrained=True)
criterion = nn.CrossEntropyLoss()
validate(testloader, resnet, criterion)
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
viz = ZetaneViz()
# switch to evaluate mode
model.eval()
viz.create_torch_model(model, torch.rand((1,3,224,224)))
for i, (inputs, target) in enumerate(val_loader):
target = target[0]['category_id']
end = time.time()
# compute output
output = model(inputs)
loss = criterion(output, target)
# viz
viz.show_input(inputs)
viz.model_inference(inputs)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
i, len(val_loader), batch_time=batch_time, loss=losses))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class ZetaneViz(object):
def __init__(self):
self.context = ztn.Context()
self.iimage = self.context.image().position(-10.0, 2.5, 0.0).scale(0.25, 0.25, 0.0)
self.vmodel = self.context.model()
self.context.clear_universe()
def show_input(self, inputs):
# move NCWH to WHC
np_image = np.moveaxis(inputs[0,:,:,:].detach().cpu().numpy(), 0, -1)
remapped = zutils.remap(np_image)
self.iimage.position(-10.0, 2.5, 0.0).scale(0.25, 0.25, 0.0).update(data=remapped)
def create_torch_model(self, model, inputs):
import torch
self.vmodel.torch(model, inputs).update()
def model_inference(self, inputs):
self.vmodel.inputs(inputs.detach().cpu().numpy()).update()
time.sleep(2)
def model_debug(self, inputs):
self.vmodel.inputs(inputs.detach().cpu().numpy()).debug()
if __name__ == '__main__':
main()