-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03 Geometry Template (Rectangle).cpp
181 lines (144 loc) · 3.64 KB
/
03 Geometry Template (Rectangle).cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/** Which of the favors of your Lord will you deny ? **/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define F first
#define S second
#define DBL long long
//#define DBL double
#define ALL(x) (x).begin(), (x).end()
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)
#ifndef ONLINE_JUDGE
#define DBG(x) cout << __LINE__ << " says: " << #x << " = " << (x) << endl
#else
#define DBG(x)
#endif
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 2e5+7;
double INF = 1e100;
double EPS = 1e-12;
struct PT
{
DBL x,y;
PT() {}
PT(DBL x,DBL y) : x(x), y(y) {}
PT(const PT &p) : x(p.x), y(p.y) {}
PT operator + (const PT &p) const
{
return PT(x+p.x, y+p.y);
}
PT operator - (const PT &p) const
{
return PT(x-p.x, y-p.y);
}
PT operator * (DBL c) const
{
return PT(x*c, y*c );
}
PT operator / (DBL c) const
{
return PT(x/c, y/c );
}
};
/**
Rectangles are defined by two points.
One is the LOWER_LEFT and the other one is the UPPER_RIGHT
**/
/**
Intersecting Points of 2 Rectangle
returns false if No Intersection
**/
bool intersectingPoints(PT a,PT b,PT c,PT d,PT &na,PT &nb)
{
na.x = max(a.x,c.x);
na.y = max(a.y,c.y);
nb.x = min(b.x,d.x);
nb.y = min(b.y,d.y);
if(na.x>nb.x || na.y>nb.y)
return false;
return true;
}
///Calculates Area of a Rectangle
LL computeArea(PT a,PT b)
{
return (b.x-a.x) * (b.y-a.y);
}
///Calculate the overlapping area of two rectangles.
LL overlapArea(PT a,PT b,PT c,PT d)
{
/** Check if there is indeed an overlap.
* e.g. c.x>=b.x i.e. the most left point of the rectangle (c,d) is
* on the right side of the most right point of the rectangle (a,b),
* therefore there is no overlapping.
*/
if ( (c.x>=b.x) || (c.y>= b.y) || (a.x>=d.x) || (a.y >= d.y) )
return 0;
/** bottom left polong long of the overlapping area. */
LL bl_x = max(a.x, c.x);
LL bl_y = max(a.y, c.y);
/** top right polong long of the overlapping area. */
LL tr_x = min(b.x, d.x);
LL tr_y = min(b.y, d.y);
return ((tr_x - bl_x) * (tr_y - bl_y));
}
/**
Find the total area covered by two rectilinear rectangles in a 2D plane.
Each rectangle is defined by its bottom left corner and top right corner.
**/
LL computeTotalArea(PT a,PT b,PT c,PT d)
{
/// The addition of area of the two rectangles minus the overlapping area.
return (computeArea(a,b) + computeArea(c,d) - overlapArea(a,b,c,d));
}
int main()
{
PT a1(2,2) , b1(4,4) , a2(1,1) , b2(3,5) , a3(3,1) , b3(5,5);
PT c1,d1,c2,d2;
intersectingPoints(a1,b1,a2,b2,c1,d1);
intersectingPoints(a1,b1,a3,b3,c2,d2);
cout<<c1.x<<" "<<c1.y<<" , "<<d1.x<<" "<<d1.y<<endl;
cout<<c2.x<<" "<<c2.y<<" , "<<d2.x<<" "<<d2.y<<endl;
}
/**
**/
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(int i=0; i<v.size(); i++)
{
os<<v[i]<<" " ;
}
os<<" ]";
return os;
}
template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}