-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path15 0-1 Knapsack.cpp
184 lines (142 loc) · 3.75 KB
/
15 0-1 Knapsack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/**
Problem : 0-1 Knapsack
In 0-1 Knapsack problem, we are given a set of items, each with a weight and a value and
we need to determine the number of each item to include in a collection so that
the total weight is less than or equal to a given limit and the total value is as large as possible.
====================================================================================================
F(i,W) = max( include ith item , exclude ith item )
Here ,
include ith item = F(i+1,W+w[i]) + v[i]
exclude ith item = F(i+1,W)
Base case:
F(i,W>MAX_WEIGHT) = INT_MIN
F(i>n,W<=MAX_WIGHT) = 0
F(i>n,W>MAX_WIGHT) = INT_MIN
**/
/** Which of the favors of your Lord will you deny ? **/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second
#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<class TIn>using indexed_set = tree<TIn, null_type, less<TIn>,rb_tree_tag, tree_order_statistics_node_update>;
/**
PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing
**/
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 1e2+7;
const int nmax2 = 1e5+7;
const LL LINF = 1e17;
template <class T>
string to_str(T x)
{
stringstream ss;
ss<<x;
return ss.str();
}
int n,MAX_WEIGHT;
LL w[nmax];
LL v[nmax];
LL dp[nmax][nmax2];
LL solve(int pos,int W) /** maximum value to get using maximum weight W **/
{
if(W>MAX_WEIGHT) return INT_MIN; /** if anytime W>MAX_HEIGHT , not possible . This is used just to avoid RTE **/
if(pos>n) /** Done with n items and now check condition **/
{
return W<=MAX_WEIGHT ? 0 : INT_MIN;
}
LL &ret = dp[pos][W];
if(ret!=-1) return ret;
LL inc = solve(pos+1,W+w[pos]) + v[pos];
LL exc = solve(pos+1,W);
return ret = max(inc,exc);
}
string solve_print(int pos,int W)
{
if(W>MAX_WEIGHT) return "";
if(pos>n) return "";
LL inc = solve(pos+1,W+w[pos]) + v[pos];
LL exc = solve(pos+1,W);
if(inc>exc) return to_str(v[pos]) + " " + solve_print(pos+1,W+w[pos]);
else return solve_print(pos+1,W);
}
int main()
{
optimizeIO();
cin>>n>>MAX_WEIGHT;
for(int i=1;i<=n;i++)
cin>>w[i]>>v[i];
memset(dp,-1,sizeof dp);
cout<<solve(0,0)<<endl;
cout<<solve_print(0,0)<<endl;
return 0;
}
/**
**/
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(int i=0; i<v.size(); i++)
{
os<<v[i]<<" " ;
}
os<<" ]";
return os;
}
template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}
//string solve_print(int i,int w)
//{
// if(w<0) return ""; /** **/
//
// if(i==0 || w==0) return "";
//
// int inc = vara[i] + dp[i-1][w-wara[i]];
// int exc = dp[i-1][w];
//
// if(inc>exc)
// return to_str(vara[i]) + " " + solve_print(i-1,w-wara[i]);
// else
// return solve_print(i-1,w);
//}