-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathreplay_memory.py
executable file
·282 lines (258 loc) · 10.1 KB
/
replay_memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import random
import numpy as np
import tensorflow as tf
from util import Dict
from util import STATE_DROPOUT_BEGIN, STATE_REWARD_DIM, STATE_STEP_DIM, STATE_STOPPED_DIM
class ReplayMemory:
def __init__(self, cfg, load):
self.cfg = cfg
self.real_dataset = cfg.real_data_provider()
if load:
self.fake_dataset = cfg.fake_data_provider()
self.fake_dataset_test = cfg.fake_data_provider_test()
self.fake_input = tf.placeholder(
tf.float32,
shape=(None, cfg.source_img_size, cfg.source_img_size,
cfg.real_img_channels),
name='fake_input')
self.fake_input_feature = tf.placeholder(
tf.float32, shape=(None,), name='fake_input_feature')
self.ground_truth = tf.placeholder(
tf.float32,
shape=(None, cfg.source_img_size, cfg.source_img_size,
cfg.real_img_channels),
name='ground_truth')
self.states = tf.placeholder(
tf.float32, shape=(None, self.cfg.num_state_dim), name='states')
self.progress = tf.placeholder(tf.float32, shape=(), name='progress')
self.real_data = tf.placeholder(
dtype=tf.float32,
shape=(None, self.cfg.real_img_size, self.cfg.real_img_size,
cfg.real_img_channels),
name='real_data')
self.real_data_feature = tf.placeholder(
dtype=tf.float32,
shape=(None,), # self.cfg.feature_size),
name='real_data_feature')
self.z = tf.placeholder(tf.float32, shape=(None, cfg.z_dim), name='z')
# The images with labels of #operations applied
self.image_pool = []
self.target_pool_size = cfg.replay_memory_size
self.fake_output = None
self.fake_output_feature = None
if load:
self.load()
def load(self):
self.fill_pool()
def get_initial_states(self, batch_size):
states = np.zeros(
shape=(batch_size, self.cfg.num_state_dim), dtype=np.float32)
for k in range(batch_size):
for i in range(len(self.cfg.filters)):
# states[k, -(i + 1)] = 1 if random.random() < self.cfg.filter_dropout_keep_prob else 0
# Used or not?
# Initially nothing has been used
states[k, -(i + 1)] = 0
return states
def fill_pool(self):
while len(self.image_pool) < self.target_pool_size:
batch, features = self.fake_dataset.get_next_batch(self.cfg.batch_size)
for i in range(len(batch)):
self.image_pool.append(
Dict(
image=batch[i],
state=self.get_initial_states(1)[0],
feature=features[i]))
self.image_pool = self.image_pool[:self.target_pool_size]
assert len(self.image_pool) == self.target_pool_size, '%d, %d' % (
len(self.image_pool), self.target_pool_size)
def get_next_RAW(self, batch_size, test=False):
if test:
batch = self.fake_dataset_test.get_next_batch(batch_size)[0]
else:
batch = self.fake_dataset.get_next_batch(batch_size)[0]
pool = []
for img in batch:
pool.append(Dict(image=img, state=self.get_initial_states(1)[0]))
return self.records_to_images_and_states(pool)
def get_next_RAW_test(self, batch_size):
batch = self.fake_dataset_test.get_next_batch(batch_size)[0]
pool = []
for img in batch:
pool.append(Dict(image=img, state=self.get_initial_states(1)[0]))
return self.records_to_images_and_states(pool)
def get_next_RAW_train_all(self):
batch = self.fake_dataset_train.get_all()[0]
pool = []
for img in batch:
pool.append(Dict(image=img, state=self.get_initial_states(1)[0]))
return self.records_to_images_and_states(pool)
def get_dummy_ground_truth(self, batch_size):
return np.zeros(
shape=[
batch_size,
] + list(map(int, self.ground_truth.shape[1:])),
dtype=np.float32)
def get_next_RAW_test_all(self):
batch = self.fake_dataset_test.get_all()[0]
pool = []
for img in batch:
pool.append(Dict(image=img, state=self.get_initial_states(1)[0]))
return self.records_to_images_and_states(pool)
def get_dummy_ground_truth(self, batch_size):
return np.zeros(
shape=[
batch_size,
] + list(map(int, self.ground_truth.shape[1:])),
dtype=np.float32)
def get_feed_dict(self, batch_size):
images, states, features = self.get_next_fake_batch(batch_size)
if self.cfg.supervised:
images, ground_truth = images[:, 0], images[:, 1]
else:
ground_truth = self.get_dummy_ground_truth(batch_size)
tmp_real_data, tmp_real_features = self.real_dataset.get_next_batch(
batch_size)
return {
self.states: states,
self.fake_input: images,
self.fake_input_feature: features,
self.ground_truth: ground_truth,
self.real_data: tmp_real_data,
self.real_data_feature: tmp_real_features,
self.z: self.get_noise(batch_size)
}
def get_feed_dict_and_states(self, batch_size):
images, states, features = self.get_next_fake_batch(batch_size)
if self.cfg.supervised:
images, ground_truth = images[:, 0], images[:, 1]
else:
ground_truth = self.get_dummy_ground_truth(batch_size)
tmp_real_data, tmp_real_featuers = self.real_dataset.get_next_batch(
batch_size)
return {
self.fake_input: images,
self.fake_input_feature: features,
self.ground_truth: ground_truth,
self.states: states,
self.real_data: tmp_real_data,
self.real_data_feature: tmp_real_featuers,
self.z: self.get_noise(batch_size)
}, features
# For training critic: only terminated states should be used.
def get_replay_feed_dict(self, batch_size):
images, states, features = self.replay_fake_batch(batch_size)
if self.cfg.supervised:
images, ground_truth = images[:, 0], images[:, 1]
else:
ground_truth = self.get_dummy_ground_truth(batch_size)
tmp_real_data, tmp_real_features = self.real_dataset.get_next_batch(
batch_size)
return {
self.fake_output: images,
self.fake_output_feature: features,
self.ground_truth: ground_truth,
self.real_data: tmp_real_data,
self.real_data_feature: tmp_real_features
}
# Not actually used.
def get_noise(self, batch_size):
if self.cfg.z_type == 'normal':
return np.random.normal(0, 1, [batch_size,
self.cfg.z_dim]).astype(np.float32)
elif self.cfg.z_type == 'uniform':
return np.random.uniform(0, 1, [batch_size,
self.cfg.z_dim]).astype(np.float32)
else:
assert False, 'Unknown noise type: %s' % self.cfg.z_type
# Note, we add finished images since the discriminator needs them for training.
def replace_memory(self, new_images):
random.shuffle(self.image_pool)
# Insert only PART of new images
for r in new_images:
if r.state[STATE_STEP_DIM] < self.cfg.maximum_trajectory_length or random.random(
) < self.cfg.over_length_keep_prob:
self.image_pool.append(r)
# ... and add some brand new RAW images
self.fill_pool()
random.shuffle(self.image_pool)
# For supervised learning case, images should be [batch size, 2, size, size, channels]
@staticmethod
def records_to_images_and_states(batch):
images = [x.image for x in batch]
states = [x.state for x in batch]
return np.stack(images, axis=0), np.stack(states, axis=0)
@staticmethod
def records_to_images_states_features(batch):
images = [x.image for x in batch]
states = [x.state for x in batch]
features = [x.feature for x in batch]
return np.stack(
images, axis=0), np.stack(
states, axis=0), np.stack(
features, axis=0)
@staticmethod
def images_and_states_to_records(images, states, features, ground_truth=None):
assert len(images) == len(states)
assert len(images) == len(features)
records = []
if ground_truth is None:
for img, state, feature in zip(images, states, features):
records.append(Dict(image=img, state=state, feature=feature))
else:
for img, gt, state, feature in zip(images, ground_truth, states,
features):
img = np.stack([img, gt])
records.append(Dict(image=img, state=state, feature=feature))
return records
def get_next_fake_batch(self, batch_size):
# print('get_next')
random.shuffle(self.image_pool)
assert batch_size <= len(self.image_pool)
batch = []
while len(batch) < batch_size:
if len(self.image_pool) == 0:
self.fill_pool()
record = self.image_pool[0]
self.image_pool = self.image_pool[1:]
if record.state[STATE_STOPPED_DIM] != 1:
# We avoid adding any finished images here.
batch.append(record)
images, states = self.records_to_images_and_states(batch)
features = [x.feature for x in batch]
features = np.stack(features, axis=0)
return images, states, features
# We choose terminated states only
def replay_fake_batch(self, batch_size):
# print('replay next')
self.fill_pool()
random.shuffle(self.image_pool)
assert batch_size <= len(self.image_pool)
# batch = self.image_pool[:batch_size]
batch = []
counter = 0
while len(batch) < batch_size:
counter += 1
if counter > batch_size * 10:
assert False, 'No terminated states discovered'
for i in range(len(self.image_pool)):
record = self.image_pool[i]
if record.state[STATE_STOPPED_DIM] > 0:
# terminated
batch.append(record)
if len(batch) >= batch_size:
break
assert len(batch) == batch_size
# add by cx
images, states = self.records_to_images_and_states(batch)
features = [x.feature for x in batch]
features = np.stack(features, axis=0)
return images, states, features
def debug(self):
tot_trajectory = 0
for r in self.image_pool:
tot_trajectory += r.state[STATE_STEP_DIM]
average_trajectory = 1.0 * tot_trajectory / len(self.image_pool)
print('# Replay memory: size %d, avg. traj. %.2f' % (len(self.image_pool),
average_trajectory))
print('#--------------------------------------------')