-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimple Linear Regression.R
50 lines (42 loc) · 1.62 KB
/
Simple Linear Regression.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Simple Linear Regression
# Lib: stats, ggplots
# *: lm(),
# Importing the dataset
dataset = read.csv('Salary_Data.csv')
# Splitting the dataset into the Training set and Test set
# install.packages('caTools')
library(caTools)
set.seed(123)
split = sample.split(dataset$Salary, SplitRatio = 2/3)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
# Feature Scaling
# training_set = scale(training_set)
# test_set = scale(test_set)
# Fitting Simple Linear Regression to the Training set
regressor = lm(formula = Salary ~ YearsExperience,
data = training_set)
# Predicting the Test set results
y_pred = predict(regressor, newdata = test_set)
# Visualising the Training set results
# see how training regression match the training dataset
library(ggplot2)
ggplot() +
geom_point(aes(x = training_set$YearsExperience, y = training_set$Salary),
colour = 'red') +
geom_line(aes(x = training_set$YearsExperience, y = predict(regressor, newdata = training_set)),
colour = 'blue') +
ggtitle('Salary vs Experience (Training set)') +
xlab('Years of experience') +
ylab('Salary')
# Visualising the Test set results
# see training regression match the testing dataset
library(ggplot2)
ggplot() +
geom_point(aes(x = test_set$YearsExperience, y = test_set$Salary),
colour = 'red') +
geom_line(aes(x = training_set$YearsExperience, y = predict(regressor, newdata = training_set)),
colour = 'blue') +
ggtitle('Salary vs Experience (Test set)') +
xlab('Years of experience') +
ylab('Salary')