-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiple Linear Regression.R
59 lines (41 loc) · 1.6 KB
/
Multiple Linear Regression.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Multiple Linear Regression
# Importing the dataset
dataset = read.csv('50_Startups.csv')
# Encoding categorical data
dataset$State = factor(dataset$State,
levels = c('New York', 'California', 'Florida'),
labels = c(1, 2, 3))
# Splitting the dataset into the Training set and Test set
# install.packages('caTools')
library(caTools)
set.seed(123)
split = sample.split(dataset$Profit, SplitRatio = 0.8)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
# Feature Scaling
# training_set = scale(training_set)
# test_set = scale(test_set)
# Fitting Multiple Linear Regression to the Training set
regressor = lm(formula = Profit ~ .,
data = training_set)
summary(regressor)
# Predicting the Test set results
y_pred = predict(regressor, newdata = test_set)
y_pred
# Fitting Multiple Linear Regression to the Training set
#regressor_simple = lm(formula = Profit ~ R.D.Spend,
# data = training_set)
#summary(regressor_simple)
# Predicting the Test set results
#y_pred_simple = predict(regressor, newdata = test_set)
#y_pred_simple
# Building the optimal model using Backward Elimination
regressor = lm(formula = Profit ~ R.D.Spend+Administration+Marketing.Spend+State,
data = dataset)
summary(regressor)
regressor = lm(formula = Profit ~ R.D.Spend+Administration+Marketing.Spend,
data = dataset)
summary(regressor)
regressor = lm(formula = Profit ~ R.D.Spend+Marketing.Spend,
data = dataset)
summary(regressor)