-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathData Preprocessing.R
44 lines (34 loc) · 1.39 KB
/
Data Preprocessing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Data Preprocessing Template
# Packages: stats, caTools
# Important functions:
# 1.function(x): to set self function
# 2.ifelse(test, yes, no)
# 3.scale(x): Feature Scaling
# Importing the dataset
dataset = read.csv('Data.csv')
# Only pick cloumns 2:3
#dataset = dataset[.2:3]
# Taking care of missing data
dataset$Age = ifelse(is.na(dataset$Age),
ave(dataset$Age, FUN = function(x) mean(x, na.rm = TRUE)),
dataset$Age)
dataset$Salary = ifelse(is.na(dataset$Salary),
ave(dataset$Salary, FUN = function(x) mean(x, na.rm = TRUE)),
dataset$Salary)
# Encoding categorical data
dataset$Country = factor(dataset$Country,
levels = c('France', 'Spain', 'Germany'),
labels = c(1, 2, 3))
dataset$Purchased = factor(dataset$Purchased,
levels = c('No', 'Yes'),
labels = c(0, 1))
# Splitting the dataset into the Training set and Test set
# install.packages('caTools')
library(caTools)
set.seed(123)
split = sample.split(dataset$Purchased, SplitRatio = 0.8, group = NULL)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
# Feature Scaling
training_set[,2:3] = scale(training_set[,2:3])
test_set[,2:3] = scale(test_set[,2:3])