-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransforms.py
560 lines (436 loc) · 17.3 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
from __future__ import division
import torch
import math
import random
from PIL import Image, ImageOps, ImageEnhance
try:
import accimage
except ImportError:
accimage = None
import numpy as np
import numbers
import types
import collections
import warnings
import scipy.ndimage.interpolation as itpl
import scipy.misc as misc
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
def _is_pil_image(img):
if accimage is not None:
return isinstance(img, (Image.Image, accimage.Image))
else:
return isinstance(img, Image.Image)
def _is_tensor_image(img):
return torch.is_tensor(img) and img.ndimension() == 3
def adjust_brightness(img, brightness_factor):
"""Adjust brightness of an Image.
Args:
img (PIL Image): PIL Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
PIL Image: Brightness adjusted image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
enhancer = ImageEnhance.Brightness(img)
img = enhancer.enhance(brightness_factor)
return img
def adjust_contrast(img, contrast_factor):
"""Adjust contrast of an Image.
Args:
img (PIL Image): PIL Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
PIL Image: Contrast adjusted image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(contrast_factor)
return img
def adjust_saturation(img, saturation_factor):
"""Adjust color saturation of an image.
Args:
img (PIL Image): PIL Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
PIL Image: Saturation adjusted image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(saturation_factor)
return img
def adjust_hue(img, hue_factor):
"""Adjust hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
See https://en.wikipedia.org/wiki/Hue for more details on Hue.
Args:
img (PIL Image): PIL Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
PIL Image: Hue adjusted image.
"""
if not(-0.5 <= hue_factor <= 0.5):
raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
input_mode = img.mode
if input_mode in {'L', '1', 'I', 'F'}:
return img
h, s, v = img.convert('HSV').split()
np_h = np.array(h, dtype=np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over='ignore'):
np_h += np.uint8(hue_factor * 255)
h = Image.fromarray(np_h, 'L')
img = Image.merge('HSV', (h, s, v)).convert(input_mode)
return img
def adjust_gamma(img, gamma, gain=1):
"""Perform gamma correction on an image.
Also known as Power Law Transform. Intensities in RGB mode are adjusted
based on the following equation:
I_out = 255 * gain * ((I_in / 255) ** gamma)
See https://en.wikipedia.org/wiki/Gamma_correction for more details.
Args:
img (PIL Image): PIL Image to be adjusted.
gamma (float): Non negative real number. gamma larger than 1 make the
shadows darker, while gamma smaller than 1 make dark regions
lighter.
gain (float): The constant multiplier.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if gamma < 0:
raise ValueError('Gamma should be a non-negative real number')
input_mode = img.mode
img = img.convert('RGB')
np_img = np.array(img, dtype=np.float32)
np_img = 255 * gain * ((np_img / 255) ** gamma)
np_img = np.uint8(np.clip(np_img, 0, 255))
img = Image.fromarray(np_img, 'RGB').convert(input_mode)
return img
class Compose(object):
"""Composes several transforms together.
Args:
transforms (list of ``Transform`` objects): list of transforms to compose.
Example:
>>> transforms.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),
>>> ])
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img):
for t in self.transforms:
img = t(img)
return img
class ToTensor(object):
"""Convert a ``numpy.ndarray`` to tensor.
Converts a numpy.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W).
"""
def __call__(self, img):
"""Convert a ``numpy.ndarray`` to tensor.
Args:
img (numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if not(_is_numpy_image(img)):
raise TypeError('img should be ndarray. Got {}'.format(type(img)))
if isinstance(img, np.ndarray):
# handle numpy array
if img.ndim == 3:
img = torch.from_numpy(img.transpose((2, 0, 1)).copy())
elif img.ndim == 2:
img = torch.from_numpy(img.copy())
else:
raise RuntimeError('img should be ndarray with 2 or 3 dimensions. Got {}'.format(img.ndim))
# backward compatibility
# return img.float().div(255)
return img.float()
class NormalizeNumpyArray(object):
"""Normalize a ``numpy.ndarray`` with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(M1,..,Mn)`` for ``n`` channels, this transform
will normalize each channel of the input ``numpy.ndarray`` i.e.
``input[channel] = (input[channel] - mean[channel]) / std[channel]``
Args:
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, img):
"""
Args:
img (numpy.ndarray): Image of size (H, W, C) to be normalized.
Returns:
Tensor: Normalized image.
"""
if not(_is_numpy_image(img)):
raise TypeError('img should be ndarray. Got {}'.format(type(img)))
# TODO: make efficient
print(img.shape)
for i in range(3):
img[:,:,i] = (img[:,:,i] - self.mean[i]) / self.std[i]
return img
class NormalizeTensor(object):
"""Normalize an tensor image with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(M1,..,Mn)`` for ``n`` channels, this transform
will normalize each channel of the input ``torch.*Tensor`` i.e.
``input[channel] = (input[channel] - mean[channel]) / std[channel]``
Args:
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized Tensor image.
"""
if not _is_tensor_image(tensor):
raise TypeError('tensor is not a torch image.')
# TODO: make efficient
for t, m, s in zip(tensor, self.mean, self.std):
t.sub_(m).div_(s)
return tensor
class Rotate(object):
"""Rotates the given ``numpy.ndarray``.
Args:
angle (float): The rotation angle in degrees.
"""
def __init__(self, angle):
self.angle = angle
def __call__(self, img):
"""
Args:
img (numpy.ndarray (C x H x W)): Image to be rotated.
Returns:
img (numpy.ndarray (C x H x W)): Rotated image.
"""
# order=0 means nearest-neighbor type interpolation
return itpl.rotate(img, self.angle, reshape=False, prefilter=False, order=0)
class Resize(object):
"""Resize the the given ``numpy.ndarray`` to the given size.
Args:
size (sequence or int): Desired output size. If size is a sequence like
(h, w), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``
"""
def __init__(self, size, interpolation='nearest'):
assert isinstance(size, int) or isinstance(size, float) or \
(isinstance(size, collections.Iterable) and len(size) == 2)
self.size = size
self.interpolation = interpolation
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be scaled.
Returns:
PIL Image: Rescaled image.
"""
if img.ndim == 3:
return misc.imresize(img, self.size, self.interpolation)
elif img.ndim == 2:
return misc.imresize(img, self.size, self.interpolation, 'F')
else:
RuntimeError('img should be ndarray with 2 or 3 dimensions. Got {}'.format(img.ndim))
class CenterCrop(object):
"""Crops the given ``numpy.ndarray`` at the center.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
@staticmethod
def get_params(img, output_size):
"""Get parameters for ``crop`` for center crop.
Args:
img (numpy.ndarray (C x H x W)): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for center crop.
"""
h = img.shape[0]
w = img.shape[1]
th, tw = output_size
i = int(round((h - th) / 2.))
j = int(round((w - tw) / 2.))
# # randomized cropping
# i = np.random.randint(i-3, i+4)
# j = np.random.randint(j-3, j+4)
return i, j, th, tw
def __call__(self, img):
"""
Args:
img (numpy.ndarray (C x H x W)): Image to be cropped.
Returns:
img (numpy.ndarray (C x H x W)): Cropped image.
"""
i, j, h, w = self.get_params(img, self.size)
"""
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
"""
if not(_is_numpy_image(img)):
raise TypeError('img should be ndarray. Got {}'.format(type(img)))
if img.ndim == 3:
return img[i:i+h, j:j+w, :]
elif img.ndim == 2:
return img[i:i + h, j:j + w]
else:
raise RuntimeError('img should be ndarray with 2 or 3 dimensions. Got {}'.format(img.ndim))
class Lambda(object):
"""Apply a user-defined lambda as a transform.
Args:
lambd (function): Lambda/function to be used for transform.
"""
def __init__(self, lambd):
assert isinstance(lambd, types.LambdaType)
self.lambd = lambd
def __call__(self, img):
return self.lambd(img)
class HorizontalFlip(object):
"""Horizontally flip the given ``numpy.ndarray``.
Args:
do_flip (boolean): whether or not do horizontal flip.
"""
def __init__(self, do_flip):
self.do_flip = do_flip
def __call__(self, img):
"""
Args:
img (numpy.ndarray (C x H x W)): Image to be flipped.
Returns:
img (numpy.ndarray (C x H x W)): flipped image.
"""
if not(_is_numpy_image(img)):
raise TypeError('img should be ndarray. Got {}'.format(type(img)))
if self.do_flip:
return np.fliplr(img)
else:
return img
class ColorJitter(object):
"""Randomly change the brightness, contrast and saturation of an image.
Args:
brightness (float): How much to jitter brightness. brightness_factor
is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
contrast (float): How much to jitter contrast. contrast_factor
is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
saturation (float): How much to jitter saturation. saturation_factor
is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
hue(float): How much to jitter hue. hue_factor is chosen uniformly from
[-hue, hue]. Should be >=0 and <= 0.5.
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
@staticmethod
def get_params(brightness, contrast, saturation, hue):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms = []
if brightness > 0:
brightness_factor = np.random.uniform(max(0, 1 - brightness), 1 + brightness)
transforms.append(Lambda(lambda img: adjust_brightness(img, brightness_factor)))
if contrast > 0:
contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast)
transforms.append(Lambda(lambda img: adjust_contrast(img, contrast_factor)))
if saturation > 0:
saturation_factor = np.random.uniform(max(0, 1 - saturation), 1 + saturation)
transforms.append(Lambda(lambda img: adjust_saturation(img, saturation_factor)))
if hue > 0:
hue_factor = np.random.uniform(-hue, hue)
transforms.append(Lambda(lambda img: adjust_hue(img, hue_factor)))
np.random.shuffle(transforms)
transform = Compose(transforms)
return transform
def __call__(self, img):
"""
Args:
img (numpy.ndarray (C x H x W)): Input image.
Returns:
img (numpy.ndarray (C x H x W)): Color jittered image.
"""
if not(_is_numpy_image(img)):
raise TypeError('img should be ndarray. Got {}'.format(type(img)))
pil = Image.fromarray(img)
transform = self.get_params(self.brightness, self.contrast,
self.saturation, self.hue)
return np.array(transform(pil))
class Crop(object):
"""Crops the given PIL Image to a rectangular region based on a given
4-tuple defining the left, upper pixel coordinated, hight and width size.
Args:
a tuple: (upper pixel coordinate, left pixel coordinate, hight, width)-tuple
"""
def __init__(self, i, j, h, w):
"""
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
"""
self.i = i
self.j = j
self.h = h
self.w = w
def __call__(self, img):
"""
Args:
img (numpy.ndarray (C x H x W)): Image to be cropped.
Returns:
img (numpy.ndarray (C x H x W)): Cropped image.
"""
i, j, h, w = self.i, self.j, self.h, self.w
if not(_is_numpy_image(img)):
raise TypeError('img should be ndarray. Got {}'.format(type(img)))
if img.ndim == 3:
return img[i:i + h, j:j + w, :]
elif img.ndim == 2:
return img[i:i + h, j:j + w]
else:
raise RuntimeError(
'img should be ndarray with 2 or 3 dimensions. Got {}'.format(img.ndim))
def __repr__(self):
return self.__class__.__name__ + '(i={0},j={1},h={2},w={3})'.format(
self.i, self.j, self.h, self.w)