-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmymain.py
163 lines (139 loc) · 6.67 KB
/
mymain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import time
import yaml
import tqdm
import torch
import myutils
import argparse
import torch.optim
import numpy as np
from PIL import Image
from myutils import *
#------------------------------------------------#
# 设置配置文件
# 备注:
# 数据集可以选择 ["nyudepthv2", "kitti"]
# 网络模型可以选择 ["resnet18", "resnet50"]
# 稀疏化类型可以选择 ['UniformSampling', 'SimulatedStereo', 'None']
#------------------------------------------------#
parser = argparse.ArgumentParser(description="Sparse-to-Dense")
parser.add_argument("--config", type=str, default="argument.yaml", help="Loading argument file")
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.FullLoader)
# print(config)
def train():
#------------------------------------------------#
# 开始训练
#------------------------------------------------#
if config["is_train"] == "train":
train_loader, val_loader = dataLoader(
config["is_train"],
config["root_path"],
config["dataset_names"],
config["max_depth"],
config["sparsifier_names"],
config["num_samples"],
config["modality"],
config["batch_size"],
config["workers"],
)
if config['resume']:
checkpoint_path = config["checkpoint_path"]
checkpoint_path = torch.load(checkpoint_path)
if config["model_names"] == 'resnet50':
model = ResNet( layers=50, decoder=config["decoder_names"],
output_size=config["output_size"],
in_channels=len(config["modality"]),
pretrained=config["pretrained"])
elif config["model_names"] == 'resnet18':
model = ResNet( layers=18, decoder=config["decoder_names"],
output_size=config["output_size"],
in_channels=len(config["modality"]),
pretrained=config["pretrained"])
optimizer = torch.optim.SGD(model.parameters(),
lr=config['lr'],
momentum=config["momentum"],
weight_decay=config["weight_decay"])
model = model.cuda()
if config["criterion"] == 'l2':
criterion = criteria.MaskedMSELoss()
elif config["criterion"] == 'l1':
criterion = criteria.MaskedL1Loss()
for i in range(config["epochs"]):
print(" processing {} epoch ..........({} / {})".format(i + 1, i + 1, config["epochs"]))
myutils.adjust_learning_rate(optimizer, i, config['lr'])
average_meter = AverageMeter()
model.train()
start_time = time.time()
print("....................",train_loader)
for j, (input, target) in tqdm.tqdm(enumerate(train_loader)):
input, target = input.cuda(), target.cuda()
torch.cuda.synchronize()
data_time = time.time() - start_time
# compute pred
pred = model(input)
loss = criterion(pred, target)
optimizer.zero_grad()
loss.backward() # compute gradient and do SGD step
optimizer.step()
torch.cuda.synchronize()
gpu_time = time.time() - start_time
# measure accuracy and record loss
result = Result()
result.evaluate(pred.data, target.data)
average_meter.update(result, gpu_time, data_time, input.size(0))
start_time = time.time()
if (j + 1) % config["print_freq"] == 0:
print('=> output: {}'.format(config["output_directory"]))
print(
't_Data={data_time:.3f}({average.data_time:.3f})\t '
't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\n'
'RMSE={result.rmse:.2f}({average.rmse:.2f}) \t'
'MAE={result.mae:.2f}({average.mae:.2f})\n '
'Delta1={result.delta1:.3f}({average.delta1:.3f}) \t'
'REL={result.absrel:.3f}({average.absrel:.3f}) \n'
.format(i+1, j+1, len(train_loader), data_time=data_time,
gpu_time=gpu_time, result=result, average=average_meter.average())
)
def test():
if config["is_train"] == "test":
test_loader = dataLoader(
config["is_train"],
config["root_path"],
config["dataset_names"],
config["max_depth"],
config["sparsifier_names"],
config["num_samples"],
config["modality"],
config["batch_size"],
config["workers"],
)
checkpoint = torch.load(config["evaluate"])
model = checkpoint['model']
model = model.cuda()
model.eval()
for i, (input, target, name) in tqdm.tqdm(enumerate(test_loader)):
input, target, name = input.cuda(), target.cuda(), name
torch.cuda.synchronize()
with torch.no_grad():
pred = model(input)
pred = myutils.resize_depth(pred, config["input_size"][1], config["input_size"][0])
cv2.imshow("pred", pred)
cv2.waitKey(0)
path = os.path.join(config['save_merge_path'], name[0] + '.png')
print("writing {} ".format(name[0] + ".png"))
write_depth(path, pred)
# rgb = input[:,:3,:,:]
# depth = input[:,3:,:,:]
# rgb, depth, target, pred = myutils.strentch_img(rgb, depth, target, pred)
# img_merge = np.hstack([rgb, depth, target, pred])
# img_merge = Image.fromarray(img_merge.astype('uint8'))
# img_merge.show()
# merge_path = os.path.join(config['save_merge_path'])
# if not os.path.exists(merge_path): os.makedirs(merge_path)
# img_merge_name = merge_path + name[0].split('\\')[4] + '.png'
# img_merge.show()
# img_merge.save(img_merge_name)
if __name__ == "__main__":
# train()
test()