-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
177 lines (145 loc) · 5.8 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import os.path
import numpy as np
import torch.utils.data as data
import h5py
import dataloaders.transforms as transforms
IMG_EXTENSIONS = ['.h5',]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def find_classes(dir):
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir, class_to_idx):
images = []
dir = os.path.expanduser(dir)
for target in sorted(os.listdir(dir)):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in sorted(fnames):
if is_image_file(fname):
path = os.path.join(root, fname)
# 路径 + 类别
item = (path, class_to_idx[target])
images.append(item)
return images
def h5_loader(path):
h5f = h5py.File(path, "r")
rgb = np.array(h5f['rgb'])
rgb = np.transpose(rgb, (1, 2, 0))
depth = np.array(h5f['depth'])
return rgb, depth
# def rgb2grayscale(rgb):
# return rgb[:,:,0] * 0.2989 + rgb[:,:,1] * 0.587 + rgb[:,:,2] * 0.114
to_tensor = transforms.ToTensor()
class MyDataloader(data.Dataset):
modality_names = ['rgb', 'rgbd', 'd']
color_jitter = transforms.ColorJitter(0.4, 0.4, 0.4)
def __init__(self, root, type, sparsifier=None, modality='rgb', loader=h5_loader):
classes, class_to_idx = find_classes(root)
imgs = make_dataset(root, class_to_idx)
assert len(imgs)>0, "Found 0 images in subfolders of: " + root + "\n"
print("Found {} images in {} folder.".format(len(imgs), type))
self.root = root
self.imgs = imgs
self.classes = classes
self.class_to_idx = class_to_idx
if type == 'train':
self.transform = self.train_transform
elif type == 'val':
self.transform = self.val_transform
elif type == "test":
self.transform = self.val_transform
else:
raise (RuntimeError("Invalid dataset type: " + type + "\n"
"Supported dataset types are: train, val"))
self.loader = loader
self.sparsifier = sparsifier
assert (modality in self.modality_names), "Invalid modality type: " + modality + "\n" + \
"Supported dataset types are: " + ''.join(self.modality_names)
self.modality = modality
self.mark = type
def train_transform(self, rgb, depth):
raise (RuntimeError("train_transform() is not implemented. "))
def val_transform(rgb, depth):
raise (RuntimeError("val_transform() is not implemented."))
def create_sparse_depth(self, rgb, depth):
if self.sparsifier is None:
return depth
else:
mask_keep = self.sparsifier.dense_to_sparse(rgb, depth)
sparse_depth = np.zeros(depth.shape)
sparse_depth[mask_keep] = depth[mask_keep]
return sparse_depth
def create_rgbd(self, rgb, depth):
sparse_depth = self.create_sparse_depth(rgb, depth)
rgbd = np.append(rgb, np.expand_dims(sparse_depth, axis=2), axis=2)
return rgbd
def __getraw__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (rgb, depth) the raw data.
"""
path, target = self.imgs[index]
rgb, depth = self.loader(path)
name = os.path.basename(path).split('.')[0]
return rgb, depth, name
def __getitem__(self, index):
rgb, depth, name = self.__getraw__(index)
if self.transform is not None:
rgb_np, depth_np = self.transform(rgb, depth)
else:
raise(RuntimeError("transform not defined"))
# color normalization
# rgb_tensor = normalize_rgb(rgb_tensor)
# rgb_np = normalize_np(rgb_np)
if self.modality == 'rgb':
input_np = rgb_np
elif self.modality == 'rgbd':
input_np = self.create_rgbd(rgb_np, depth_np)
elif self.modality == 'd':
input_np = self.create_sparse_depth(rgb_np, depth_np)
input_tensor = to_tensor(input_np)
while input_tensor.dim() < 3:
input_tensor = input_tensor.unsqueeze(0)
depth_tensor = to_tensor(depth_np)
depth_tensor = depth_tensor.unsqueeze(0)
if self.mark == "test":
return input_tensor, depth_tensor, name
else:
return input_tensor, depth_tensor
def __len__(self):
return len(self.imgs)
# def __get_all_item__(self, index):
# """
# Args:
# index (int): Index
# Returns:
# tuple: (input_tensor, depth_tensor, input_np, depth_np)
# """
# rgb, depth = self.__getraw__(index)
# if self.transform is not None:
# rgb_np, depth_np = self.transform(rgb, depth)
# else:
# raise(RuntimeError("transform not defined"))
# # color normalization
# # rgb_tensor = normalize_rgb(rgb_tensor)
# # rgb_np = normalize_np(rgb_np)
# if self.modality == 'rgb':
# input_np = rgb_np
# elif self.modality == 'rgbd':
# input_np = self.create_rgbd(rgb_np, depth_np)
# elif self.modality == 'd':
# input_np = self.create_sparse_depth(rgb_np, depth_np)
# input_tensor = to_tensor(input_np)
# while input_tensor.dim() < 3:
# input_tensor = input_tensor.unsqueeze(0)
# depth_tensor = to_tensor(depth_np)
# depth_tensor = depth_tensor.unsqueeze(0)
# return input_tensor, depth_tensor, input_np, depth_np