-
Notifications
You must be signed in to change notification settings - Fork 8
/
data_utils.py
316 lines (274 loc) · 12.3 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""A library for loading Type Dataset."""
import glob
import json
import logging
import random
import sys
from collections import defaultdict
import gluonnlp
import numpy as np
sys.path.insert(0, './resources/')
import constant
import torch
def to_torch(feed_dict):
torch_feed_dict = {}
if 'annot_id' in feed_dict:
annot_ids = feed_dict.pop('annot_id')
for k, v in feed_dict.items():
if 'embed' in k:
torch_feed_dict[k] = torch.autograd.Variable(torch.from_numpy(v), requires_grad=False).cuda().float()
elif 'elmo' in k:
torch_feed_dict[k] = v
elif 'token_bio' == k:
torch_feed_dict[k] = torch.autograd.Variable(torch.from_numpy(v), requires_grad=False).cuda().float()
elif 'y' == k or k == 'mention_start_ind' or k == 'mention_end_ind' or 'length' in k:
torch_feed_dict[k] = torch.autograd.Variable(torch.from_numpy(v), requires_grad=False).cuda()
elif k == 'span_chars':
torch_feed_dict[k] = torch.autograd.Variable(torch.from_numpy(v), requires_grad=False).cuda()
elif k == 'token_seq_mask':
torch_feed_dict[k] = torch.from_numpy(v).byte().cuda()
elif k == 'context' or k == 'mention':
torch_feed_dict[k] = v
else:
torch_feed_dict[k] = torch.from_numpy(v).cuda()
return torch_feed_dict, annot_ids
def load_embedding_dict(embedding_path, embedding_size):
print("Loading word embeddings from {}...".format(embedding_path))
default_embedding = np.zeros(embedding_size)
embedding_dict = defaultdict(lambda: default_embedding)
with open(embedding_path) as f:
for i, line in enumerate(f.readlines()):
splits = line.split()
if len(splits) != embedding_size + 1:
continue
assert len(splits) == embedding_size + 1
word = splits[0]
embedding = np.array([float(s) for s in splits[1:]])
embedding_dict[word] = embedding
print("Done loading word embeddings!")
return embedding_dict
def get_vocab(source='glove'):
"""
Get vocab file [word -> embedding]
"""
char_vocab = constant.CHAR_DICT
if source == 'glove':
word_vocab = load_embedding_dict(constant.GLOVE_VEC, 300)
elif source == 'fasttext_wiki':
word_vocab = load_embedding_dict(constant.FASTTEXT_WIKI_VEC, 300)
elif source == 'fasttext_crawl':
word_vocab = load_embedding_dict(constant.FASTTEXT_CRAWL_VEC, 300)
return char_vocab, word_vocab
def pad_slice(seq, seq_length, cut_left=False, pad_token="<none>"):
if len(seq) >= seq_length:
if not cut_left:
return seq[:seq_length]
else:
output_seq = [x for x in seq if x != pad_token]
if len(output_seq) >= seq_length:
return output_seq[-seq_length:]
else:
return [pad_token] * (seq_length - len(output_seq)) + output_seq
else:
return seq + ([pad_token] * (seq_length - len(seq)))
def get_word_vec(word, vec_dict):
if word in vec_dict:
return vec_dict[word]
return vec_dict['unk']
def build_vocab(file_list = ['crowd/dev.json', 'crowd/train_m.json', 'crowd/test.json', 'ontonotes/augmented_train.json', 'ontonotes/g_dev.json', 'ontonotes/g_test.json', 'distant_supervision/headword_train.json', 'distant_supervision/headword_dev.json', 'distant_supervision/el_dev.json', 'distant_supervision/el_train.json']):
data_path = "data/release/"
words = []
for file in file_list:
file_name = data_path + file
with open(file_name) as f:
line_elems = [json.loads(sent.strip()) for sent in f.readlines()]
mention_seq = [line_elem["mention_span"].split() for line_elem in line_elems]
left_seq = [line_elem['left_context_token'] for line_elem in line_elems]
right_seq = [line_elem['right_context_token'] for line_elem in line_elems]
for _ in mention_seq + right_seq + left_seq:
words += [tok.lower() for tok in _]
counter = gluonnlp.data.count_tokens(words)
vocab = gluonnlp.Vocab(counter)
with open('data/release/idx_to_token', 'w') as g:
g.write('\n'.join(vocab.idx_to_token))
with open('data/release/token_to_idx.json', 'w') as g:
json.dump(vocab.token_to_idx, g)
def load_vocab():
with open('data/release/idx_to_token') as f:
idx_to_token = [word.strip() for word in f.readlines()]
with open('data/release/token_to_idx.json') as g:
token_to_idx = json.load(g)
return idx_to_token, token_to_idx
def get_example(generator, glove_dict, batch_size, answer_num,
eval_data=False, lstm_type="two", simple_mention=True):
embed_dim = 300
cur_stream = [None] * batch_size
no_more_data = False
while True:
bsz = batch_size
seq_length = 25
for i in range(batch_size):
try:
cur_stream[i] = list(next(generator))
except StopIteration:
no_more_data = True
bsz = i
break
if lstm_type == "two":
left_embed = np.zeros([bsz, seq_length, embed_dim], np.float32)
right_embed = np.zeros([bsz, seq_length, embed_dim], np.float32)
left_seq_length = np.zeros([bsz], np.int32)
right_seq_length = np.zeros([bsz], np.int32)
else:
max_seq_length = min(50, max([len(elem[1]) + len(elem[2]) + len(elem[3]) for elem in cur_stream if elem]))
token_embed = np.zeros([bsz, max_seq_length, embed_dim], np.float32)
token_seq_mask = np.ones([bsz, max_seq_length])
token_seq_length = np.zeros([bsz], np.float32)
token_bio = np.zeros([bsz, max_seq_length, 4], np.float32)
token_bio_mask = np.zeros([bsz, max_seq_length], np.float32)
mention_len = np.zeros([bsz], np.float32)
mention_start_ind = np.zeros([bsz, 1], np.int64)
mention_end_ind = np.zeros([bsz, 1], np.int64)
max_mention_length = min(20, max([len(elem[3]) for elem in cur_stream if elem]))
max_span_chars = min(25, max(max([len(elem[5]) for elem in cur_stream if elem]), 5))
annot_ids = np.zeros([bsz], np.object)
span_chars = np.zeros([bsz, max_span_chars], np.int64)
mention_embed = np.zeros([bsz, max_mention_length, embed_dim], np.float32)
targets = np.zeros([bsz, answer_num], np.float32)
context = []
mention = []
for i in range(bsz):
left_seq = cur_stream[i][1]
if len(left_seq) > seq_length:
left_seq = left_seq[-seq_length:]
mention_seq = cur_stream[i][3]
annot_ids[i] = cur_stream[i][0]
right_seq = cur_stream[i][2]
mention.append(' '.join(mention_seq))
context.append(' '.join(left_seq + mention_seq + right_seq))
# SEPARATE LSTM SETTING for left / right
if lstm_type == "two":
left_seq_length[i] = max(1, min(len(cur_stream[i][1]), seq_length))
right_seq_length[i] = max(1, min(len(cur_stream[i][2]), seq_length))
start_j = max(0, seq_length - len(left_seq))
for j, left_word in enumerate(left_seq):
if j < seq_length:
left_embed[i, start_j + j, :300] = get_word_vec(left_word, glove_dict)
for j, right_word in enumerate(cur_stream[i][2]):
if j < seq_length:
right_embed[i, j, :300] = get_word_vec(right_word, glove_dict)
# SINGLE LSTM
else:
token_seq = left_seq + mention_seq + right_seq
mention_start_ind[i] = min(seq_length, len(left_seq))
mention_end_ind[i] = min(49, len(left_seq) + len(mention_seq) - 1)
for j, word in enumerate(token_seq):
if j < max_seq_length:
token_embed[i, j, :300] = get_word_vec(word, glove_dict)
for j, _ in enumerate(left_seq):
token_bio[i, min(j, 49), 0] = 1.0 # token bio: 0(left) start(1) inside(2) 3(after)
token_bio_mask[i, min(j, 49)] = 0.0
for j, _ in enumerate(right_seq):
token_bio[i, min(j + len(mention_seq) + len(left_seq), 49), 3] = 1.0
token_bio_mask[i, min(j + len(mention_seq) + len(left_seq), 49)] = 0.0
for j, _ in enumerate(mention_seq):
if j == 0 and len(mention_seq) == 1:
token_bio[i, min(j + len(left_seq), 49), 1] = 1.0
else:
token_bio[i, min(j + len(left_seq), 49), 2] = 1.0
token_bio_mask[i, min(j + len(left_seq), 49)] = 1.0
token_seq_length[i] = min(50, len(token_seq))
if token_seq_length[i] < 50:
token_seq_mask[i, int(token_seq_length[i]):] = 0
mention_len[i] = min(len(mention_seq), max_mention_length)
for j, mention_word in enumerate(mention_seq):
if j < max_mention_length:
if simple_mention:
mention_embed[i, j, :300] = [k / len(cur_stream[i][3]) for k in
get_word_vec(mention_word, glove_dict)]
else:
mention_embed[i, j, :300] = get_word_vec(mention_word, glove_dict)
span_chars[i, :] = pad_slice(cur_stream[i][5], max_span_chars, pad_token=0)
for answer_ind in cur_stream[i][4]:
targets[i, answer_ind] = 1.0
feed_dict = {"annot_id": annot_ids,
"mention_embed": mention_embed,
"span_chars": span_chars,
"y": targets}
if lstm_type == "two":
feed_dict["right_embed"] = np.flip(right_embed, 1).copy()
feed_dict["left_embed"] = left_embed
feed_dict["right_seq_length"] = right_seq_length
feed_dict["left_seq_length"] = left_seq_length
else:
feed_dict["token_bio"] = token_bio
feed_dict["token_embed"] = token_embed
feed_dict["token_seq_length"] = token_seq_length
feed_dict["token_seq_mask"] = token_seq_mask
feed_dict["mention_start_ind"] = mention_start_ind
feed_dict["mention_end_ind"] = mention_end_ind
feed_dict["token_bio_mask"] = token_bio_mask
feed_dict["mention_len"] = mention_len
# for analysis
feed_dict['context'] = context
feed_dict['mention'] = mention
if no_more_data:
if eval_data and bsz > 0:
yield feed_dict
break
yield feed_dict
class TypeDataset(object):
"""Utility class type datasets"""
def __init__(self, filepattern, vocab, goal, lstm_type):
"""Initialize Type Vocabulary
Args:
filepattern: Dataset file pattern.
vocab: Vocabulary.
"""
self._all_shards = glob.glob(filepattern)
self.goal = goal
self.lstm_type = lstm_type
self.answer_num = constant.ANSWER_NUM_DICT[goal]
random.shuffle(self._all_shards)
self.char_vocab, self.glove_dict = vocab
self.word2id = constant.ANS2ID_DICT[goal]
print("Answer num %d" % (self.answer_num))
print('Found %d shards at %s' % (len(self._all_shards), filepattern))
logging.info('Found %d shards at %s' % (len(self._all_shards), filepattern))
def _load_shard(self, shard_name, eval_data):
"""Read one file and convert to ids.
Args:
shard_name: file path.
Returns:
list of (id, global_word_id) tuples.
"""
with open(shard_name) as f:
line_elems = [json.loads(sent.strip()) for sent in f.readlines()]
if not eval_data:
line_elems = [line_elem for line_elem in line_elems if len(line_elem['mention_span'].split()) < 11]
annot_ids = [line_elem["annot_id"] for line_elem in line_elems]
mention_span = [[self.char_vocab[x] for x in list(line_elem["mention_span"])] for line_elem in line_elems]
mention_seq = [line_elem["mention_span"].split() for line_elem in line_elems]
left_seq = [line_elem['left_context_token'] for line_elem in line_elems]
right_seq = [line_elem['right_context_token'] for line_elem in line_elems]
y_str_list = [line_elem['y_str'] for line_elem in line_elems]
y_ids = []
for iid, y_strs in enumerate(y_str_list):
y_ids.append([self.word2id[x] for x in y_strs if x in self.word2id])
return zip(annot_ids, left_seq, right_seq, mention_seq, y_ids, mention_span)
def _get_sentence(self, epoch, forever, eval_data, shuffle=False):
for i in range(0, epoch if not forever else 100000000000000):
for shard in self._all_shards:
ids = list(self._load_shard(shard, eval_data))
if shuffle:
# print('Shuffle training data')
np.random.shuffle(ids)
for current_ids in ids:
yield current_ids
def get_batch(self, batch_size=128, epoch=5, forever=False, eval_data=False, simple_mention=True, shuffle=False):
return get_example(self._get_sentence(epoch, forever=forever, eval_data=eval_data, shuffle=shuffle), self.glove_dict,
batch_size=batch_size, answer_num=self.answer_num, eval_data=eval_data,
simple_mention=simple_mention, lstm_type=self.lstm_type)
if __name__ == '__main__':
build_vocab()
# load_vocab()