Skip to content

Latest commit

 

History

History
104 lines (72 loc) · 3.18 KB

README.md

File metadata and controls

104 lines (72 loc) · 3.18 KB

StackMaster

A collection of methods for data stacking

plot1

Introduction

A collection of methods for stacking of generic time series data. See Yang et al. (2022)[https://academic.oup.com/gji/article/232/3/1600/6762921] for methods validation and comparison.

Citation

Please cite Yang et al. (2022)[https://academic.oup.com/gji/article/232/3/1600/6762921] if you used stackmaster functions in your research/publications.

Folders/directories

  1. Matlab: MATLAB implementations of the stacking methods. NOTE: tf-PWS in MATLAB is not ready yet and may produce unexpected stacking results.
  2. stackmaster: root directory of the stackmaster codes in Python.
  3. data: example data for test run.
  4. figs: figures used in this README file.
  5. notebooks: example notebooks to use the functions.

Available modules

This package is under active development. The currently available modules are listed here.

  1. utils: This module contains frequently used utility functions.

  2. core: This module contains core stacking functions.

Installation

  1. Install stackmaster package functions using pip. We recommend installing stackmaster in a virtual environment.
$ pip install stackmaster

This step will install the StackMaster package. The modules would then be imported under any working directory.

  1. Install with local copy:

cd to the directory you want to save the package files. Then run:

$ pip install .

Test the installation

Run the following commands to test your installation, under the root directory of StackMaster.

iimport os,pickle
import numpy as np
import matplotlib.pyplot as plt
from stackmaster.core import stack
from scipy.signal import sosfiltfilt, butter

dataroot='./data'
dfile=dataroot+"/stackmaster_testdataset.pk"
d=pickle.load(open(dfile,'rb'))

scale=60
data,dt,lag,d_id=[d["data"],d["dt"],d['lag'],d['id']]
tx=np.arange(-lag,lag+0.5*dt,dt)
extent=[-lag,lag,data.shape[0],0]
dn=data.copy()

sos=butter(4,[0.05,0.5],fs=1/dt,btype="bandpass",output='sos')

stack_method="robust"

for i in range(data.shape[0]):
    dn[i,:]=sosfiltfilt(sos,data[i,:]/np.max(np.abs(data[i,:])))

## plot
plt.figure(figsize=(10,5),facecolor="w")
plt.imshow(dn,extent=extent,cmap="seismic",aspect="auto")

dstack=stack(dn,method=stack_method)
plt.plot(tx,scale*dstack+0.5*data.shape[0],'k',lw=2,label=stack_method)
plt.vlines(0,0,data.shape[0],'k')
plt.xlim([-200,200])
plt.ylim([0,data.shape[0]])
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.title(d_id)
plt.xlabel("time (s)",fontsize=14)
plt.ylabel("order",fontsize=14)
plt.legend(fontsize=12)
plt.show()

You should get the following plot:

plot1

Tutorials on key functionalities

See https://github.com/xtyangpsp/StackMaster for tutorials and more detailed descriptions.

Contribute

Any bugs and ideas are welcome. Please file an issue through GitHub https://github.com/xtyangpsp/StackMaster.

References

  • Yang, X., Bryan, J., Okubo, K., Jiang, C., Clements, T., & Denolle, M. A. (2022). Optimal stacking of noise cross-correlation functions. Geophysical Journal International, 232(3), 1600–1618. https://doi.org/10.1093/gji/ggac410