-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
245 lines (207 loc) · 6.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#coding=utf-8
import torch as t
import torch.nn as nn
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence, pad_sequence
from config import opt
from utils.visualize import Visualizer
from utils.Trainer import Trainer
from utils.util import RebuildWavFromMask
from data import MixSpeakers, DataLoader
from itertools import permutations
import numpy as np
import os
import time
class RSHNetTrainer(Trainer):
def __init__(self, opt):
super(RSHNetTrainer, self).__init__(opt)
self.alpha = opt.alpha
self.beta = opt.beta
self.greedy = opt.greedy
def set_train_dataloader(self):
#mixes = MixSpeakers(self.opt.train_data_path.format(num=self.opt.speaker_nums[0], data_type='tr')) # just 2 speakers now for test!
#return DataLoader(mixes, batch_size=self.opt.batch_size), None
return DataLoader(self.opt.train_data_path, self.opt.speaker_nums, self.opt.batch_size), DataLoader(self.opt.cv_data_path, self.opt.speaker_nums, self.opt.batch_size)
def set_test_dataloader(self):
return DataLoader(self.opt.test_data_path, self.opt.speaker_nums, batch_size=1)
def recursive_loss(self, data, label):
'''
data:
mix [B, T, num_bins] PackedSequence...
and vad [B, T, num_bins] ...
label:
M [C, B, T, num_bins] Padded...
compute loss using PIT for M ~ M
L_{Mask}: MSE?
L_{flag}: CrossEntropy? MSE?
L_{res_Mask}: Square? or CrossEntropy that minus is heavily gg!
'''
# just for test... no need of vad...
data = data[0]
C = label.shape[0]
B = label.shape[1]
num_bins = label.shape[-1]
stop_flag = t.zeros([B, C])
stop_flag[:, -1] = 1
stop_flag = stop_flag.to(self.opt.device)
loss = [] # if greedy, it's directly loss array [C, B], else Ms [C, B, T, num_bins]!
flags = []
padded_data, data_lengths = pad_packed_sequence(data, batch_first=True)
Loss_Mask = pad_sequence([t.ones([times, C, num_bins]) for times in data_lengths], batch_first=True) # [B, T, C, num_bins]
Loss_Mask = Loss_Mask.permute(2, 0, 1, 3) # [C, B, T, num_bins]
Loss_Mask = Loss_Mask.to(self.opt.device)
M = t.ones(padded_data.shape) # M [B, T, num_bins]
M = M.to(self.opt.device, dtype=t.float32)
res = t.ones([C, B]).to(self.opt.device, dtype=t.float32)
reses = []
reses.append(res)
min_per = []
for i in range(C):
inputs = pack_padded_sequence(t.cat([padded_data, M], dim=-1), data_lengths, batch_first=True)
tmp_m, tmp_z = self.model(inputs)
if self.greedy:
tmp_M = t.stack([tmp_m for _ in range(C)], dim=0)
tmp_loss = t.norm((tmp_M - label) * Loss_Mask, p='fro', dim=[-2, -1]) # size [C, B]
# weight mask the tmp_loss (since some have been matched
tmp_loss = tmp_loss + (t.max(tmp_loss) * res)
# get indices
indice = t.min(tmp_loss, dim=0) # both values [B, ] and indices [B, ]
min_per.append(indice.indices)
new_mask = []
new_res = res.clone()
for iii in range(B):
new_mask.append(label[indice.indices[iii]][iii])
new_res[indice.indices[iii]][iii] = 0
reses.append(new_res)
M = M - t.stack(new_mask, dim=0)
loss.append(indice.values)
else:
M = M - tmp_m
loss.append(tmp_m)
flags.append(tmp_z)
loss = t.stack(loss, dim=0) # losses [C, B] or Ms [C, B, T, num_bins]
if self.greedy:
min_per = t.stack(min_per, dim=0)
L_mask = t.sum(loss)
else:
pit_mat = t.stack([self.mse_loss(loss, label, p, Loss_Mask) for p in permutations(range(C))])
L_mask, min_per = t.min(pit_mat, dim=0)
L_mask = t.sum(L_mask)
L_flag = nn.BCELoss()(t.stack(flags, dim=1), stop_flag)
L_resMask = t.norm(M, 2)
'''
output_flags = output[2] # [B, C]
L_flag = nn.BCELoss()(output_flags, label[1])
L_resMask = t.norm(output[1], 2)
M = output[0]
C = M.shape[0]
if self.greedy:
L_mask = t.sum(output[3], dim=0)
else:
# pit_mat with shape [C!, B]
pit_mat = t.stack([self.mse_loss(M, label[0], p) for p in permutations(range(C))])
L_mask, min_per = t.min(pit_mat, dim=0)
'''
# for test
return L_mask, L_flag, L_resMask
#return L_mask + self.alpha * L_flag + self.beta * L_resMask
def mse_loss(self, obtain_m, ref_m, permutation, Mask):
'''
obtain_m: the elimated masks [C, B, T, num_bins]
ref_m: the reference masks [C, B, T, num_bins]
permutation: one permutation of C!
Mask: deal with differrent T steps... [C, B, T, num_bins]
'''
# get a loss with shape [B, ]
return sum([self.mse(obtain_m[s], ref_m[t], Mask[t]) for s, t in enumerate(permutation)])
def mse(self, ob_m, ref_m, loss_m):
'''
input:
ob_m: [B, T, num_bins]
ref_m: [B, T, num_bins]
loss_m: [B, T, num_bins]
out:
loss: [B, ]
'''
return t.norm((ob_m - ref_m) * loss_m, p='fro', dim=[-2, -1])
def sisnr_loss(self, ob_s, ref_s, normalize=True):
def vec_l2norm(x):
return np.linalg.norm(x, 2)
if normalize:
n_ob_s = ob_s - np.mean(ob_s)
n_ref_s = ref_s - np.mean(ref_s)
tar = np.inner(n_ob_s, n_ref_s) * n_ref_s / vec_l2norm(n_ref_s) ** 2
noi = n_ob_s - tar
else:
tar = np.inner(ob_s, ref_s) * ref_s / vec_l2norm(ref_s) ** 2
noi = ob_s - tar
return 20 * np.log10(vec_l2norm(tar)/vec_l2norm(noi))
def compute_evaluation(self, datas, label, types):
'''
datas:
mix: [T, num_bins] complex
and (vad [T, num_bins]...
label:
np arrays [C, nsamples]
types:
['Acc', 'SDR', ...]
'''
ans = {}
# now no need of vad...
raw_data = datas[0] # complex [T, num_bins]
data = t.from_numpy(np.abs(raw_data)).to(self.opt.device, dtype=t.float32)
vad_mask = datas[1]
C = len(label)
M = t.ones(data.shape) # [T, num_bins]
M = M.to(self.opt.device, dtype=t.float32)
flag = 1.
c = 0
Loss = []
compute_SDR = True
if 'SDR' not in types:
compute_SDR = False
SDRs = []
while flag >= 0.5:
inputs = t.cat([data, M], dim=-1)
tmp_m, flag = self.model(inputs) # tmp_m [1, T, num_bins], flag [1, ] or []
tmp_m = t.squeeze(tmp_m)
rebuild_wav = RebuildWavFromMask(raw_data, tmp_m.cpu().detach().numpy(), window_size=self.opt.window_size, window=self.opt.window, window_shift=self.opt.window_shift)
SDR = -100
# directly compute SDR each pair greedily!... if it works :)
if compute_SDR:
for spk in label:
tmp_SDR = ComputeSDR(rebuild_wav, spk)
SDR = max(SDR, tmp_SDR)
SDRs.append(SDR)
Loss.append(tmp_m)
M = M - tmp_m
c += 1
if 'Acc' in types:
if c == C:
ans['Acc'] = True
else:
ans['Acc'] = False
if compute_SDR:
ans['SDR'] = mean(SDRs)
return ans
def train(**kwargs):
opt._parse(kwargs)
trainer = RSHNetTrainer(opt)
trainer.run()
def test(**kwargs):
opt._parse(kwargs)
trainer = RSHNetTrainer(opt)
trainer.test()
def help():
print("""
usage : python file.py <function> [--args=value]
<function> := train | help
example:
python {0} train --env='env0701' --lr=0.01
python {0} help
avaiable args:""".format(__file__))
from inspect import getsource
source = (getsource(opt.__class__))
print(source)
if __name__=='__main__':
import fire
fire.Fire()