-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfoo.py
163 lines (143 loc) · 4.46 KB
/
foo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch as t
import torch.nn as nn
import scipy.signal as signal
import numpy as np
from torch.nn.utils.rnn import pack_sequence, pad_packed_sequence, pack_padded_sequence, pad_sequence
from utils import util, process
from models import RSHNet, ConvTasNet
from itertools import permutations
from main import RSHNetTrainer
from config import opt
from tqdm import tqdm
import time
from data import MixSpeakers, get_bs
def loss(output, label):
'''
output:
M [C, B, T, num_bins]
res_M [B, T, num_bins]
and
z [B, C]
label:
M [C, B, T, num_bins]
z [B, C]
compute loss using PIT for M ~ M
L_{Mask}: MSE?
L_{flag}: CrossEntropy? MSE?
L_{res_Mask}: Square? or CrossEntropy that minus is heavily gg!
'''
output_flags = output[2] # [B, C]
L_flag = nn.BCELoss()(output_flags, label[1])
L_resMask = t.norm(output[1], 2)
M = output[0]
C = M.shape[0]
# pit_mat with shape [C!, B]
pit_mat = t.stack([mse_loss(M, label[0], p) for p in permutations(range(C))])
L_mask, min_per = t.min(pit_mat, dim=0)
return L_mask + L_flag + L_resMask
def mse_loss(obtain_m, ref_m, permutation):
'''
obtain_m: the elimated masks [C, B, T, num_bins]
ref_m: the reference masks [C, B, T, num_bins]
permutation: one permutation of C!
'''
# get a loss with shape [B, ]
return sum([mse(obtain_m[s], ref_m[t]) for s, t in enumerate(permutation)])
def mse(ob_m, ref_m):
'''
input:
ob_m: [B, T, num_bins]
ref_m: [B, T, num_bins]
out:
loss: [B, ]
'''
return t.norm(ob_m - ref_m, p='fro', dim=[-2, -1])
def test_net():
net = RSHNet()
x = [t.rand(100, 129), t.rand(90, 129), t.rand(80, 129)]
xx = pack_sequence(x)
xxx, batch_length = pad_packed_sequence(xx, batch_first=True)
M = t.ones(xxx.shape)
xxxx = t.cat([xxx, M], dim=-1)
print(xxxx.shape)
xxxxx = pack_padded_sequence(xxxx, batch_length, batch_first=True)
#print("{} #param: {:.2f}".format(net.name, util.ComputParameters(net)))
m, z = net(xxxxx)
print(m.shape, z.shape)
def test_recursive_loss(**kwargs):
opt._parse(kwargs)
trainer = RSHNetTrainer(opt)
data = [t.rand(120, 129), t.rand(110, 129), t.rand(100, 129)]
data = pack_sequence(data)
label = [t.stack([t.rand([120, 129]), t.rand([120, 129]), t.rand([120, 129])]), t.stack([t.rand([110, 129]), t.rand([110, 129]), t.rand([110, 129])]), t.stack([t.rand([100, 129]), t.rand([100, 129]), t.rand([100, 129])])]
label = [x.permute(1, 0, 2) for x in label]
label = pad_sequence(label, batch_first=True).permute(2, 0, 1, 3)
L1, L2, L3 = trainer.recursive_loss(data, label)
print(L1, L2, L3)
'''
def test_net():
net = RSHNet()
x = t.rand(2, 101, 129)
print("{} #param: {:.2f}".format(net.name, util.ComputParameters(net)))
m, resm, z, _ = net(x, 3)
print(m.shape, resm.shape, z.shape)
C = 3
ref_m = t.rand([3, 2, 101, 129])
ref_z = t.rand([2, 3])
label = [ref_m, ref_z]
output = [m, resm, z]
Loss = loss(output, label)
print(Loss)
x = t.rand(4, 2, 101, 129) # [C + 1, B, T, num_bins]
net.greedy = True
m, resm, z, _ = net(x, 3)
print(m.shape, resm.shape, z.shape)
C = 3
ref_m = t.rand([3, 2, 101, 129])
ref_z = t.rand([2, 3])
label = [ref_m, ref_z]
output = [m, resm, z]
Loss = loss(output, label)
print(Loss)
'''
def test_mixwav():
path = '/Users/yuanzeyu/Desktop/test_wav'
save_path = '/Users/yuanzeyu/Desktop/test_wav/saves'
num_speakers = [2]
snr_range = [-5., 5.]
nums = [1, 1, 1]
util.CreateMixWave(path, save_path, num_speakers, snr_range, nums, spl=44100)
def test_createlabels():
speaker_nums = [2]
data_path = '/Users/yuanzeyu/Desktop/test_wav/saves'
save_path = '/Users/yuanzeyu/Desktop/test_wav/npy_saves'
window_size = 1024
window_shift = 768
spl = 44100
util.CreateLabelsAll(speaker_nums, data_path, save_path, window_size, window_shift, spl)
def test_stft():
path = '/Users/yuanzeyu/Desktop/mix_LSHNY_-5db.wav'
sig = process.read_wav(path)
sig = np.asarray([sig, sig])
print(sig.shape)
#stft_sig = process.stft(sig)
#print(stft_sig.shape)
stft_sig_ = signal.stft(sig, nperseg=1024, noverlap=768, nfft=1024, window='blackman')
print(stft_sig_[0].shape, stft_sig_[1].shape, stft_sig_[2].shape)
#print('##############')
#stft_sig = stft_sig[:-1, :]
#print(np.sum(stft_sig.T - stft_sig_[2][0]))
def test_MixSpeakers():
path = '/Users/yuanzeyu/Desktop/test_wav/npy_saves/2speakers/tr'
mixes = MixSpeakers(path)
res = mixes[0:1]
print(res[0][0].shape)
def test_bs():
l = 40
batch_size = 16
print(get_bs(l, batch_size, 2))
def test_sh():
for i in tqdm(range(1000)):
time.sleep(1)
if __name__ == '__main__':
print("..")