forked from xcmyz/FastSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
202 lines (164 loc) · 7.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
import torch.nn as nn
from multiprocessing import cpu_count
import numpy as np
import argparse
import os
import time
import math
from FastSpeech import FastSpeech
from loss import FastSpeechLoss
from data_utils import FastSpeechDataset, collate_fn, DataLoader
from optimizer import ScheduledOptim
from alignment import get_alignment, get_tacotron2
import hparams as hp
def main(args):
# Get device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Define model
model = nn.DataParallel(FastSpeech()).to(device)
tacotron2 = get_tacotron2()
print("FastSpeech and Tacotron2 Have Been Defined")
num_param = sum(param.numel() for param in model.parameters())
print('Number of FastSpeech Parameters:', num_param)
# Get dataset
dataset = FastSpeechDataset()
# Optimizer and loss
optimizer = torch.optim.Adam(
model.parameters(), betas=(0.9, 0.98), eps=1e-9)
scheduled_optim = ScheduledOptim(optimizer,
hp.word_vec_dim,
hp.n_warm_up_step,
args.restore_step)
fastspeech_loss = FastSpeechLoss().to(device)
print("Defined Optimizer and Loss Function.")
# Get training loader
print("Get Training Loader")
training_loader = DataLoader(dataset,
batch_size=hp.batch_size,
shuffle=True,
collate_fn=collate_fn,
drop_last=True,
num_workers=cpu_count())
try:
checkpoint = torch.load(os.path.join(
hp.checkpoint_path, 'checkpoint_%d.pth.tar' % args.restore_step))
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("\n------Model Restored at Step %d------\n" % args.restore_step)
except:
print("\n------Start New Training------\n")
if not os.path.exists(hp.checkpoint_path):
os.mkdir(hp.checkpoint_path)
# Init logger
if not os.path.exists(hp.logger_path):
os.mkdir(hp.logger_path)
# Training
model = model.train()
total_step = hp.epochs * len(training_loader)
Time = np.array(list())
Start = time.clock()
for epoch in range(hp.epochs):
for i, data_of_batch in enumerate(training_loader):
start_time = time.clock()
current_step = i + args.restore_step + \
epoch * len(training_loader) + 1
# Init
scheduled_optim.zero_grad()
if not hp.pre_target:
# Prepare Data
src_seq = data_of_batch["texts"]
src_pos = data_of_batch["pos"]
mel_tgt = data_of_batch["mels"]
src_seq = torch.from_numpy(src_seq).long().to(device)
src_pos = torch.from_numpy(src_pos).long().to(device)
mel_tgt = torch.from_numpy(mel_tgt).float().to(device)
alignment_target = get_alignment(
src_seq, tacotron2).float().to(device)
# For Data Parallel
mel_max_len = mel_tgt.size(1)
else:
# Prepare Data
src_seq = data_of_batch["texts"]
src_pos = data_of_batch["pos"]
mel_tgt = data_of_batch["mels"]
alignment_target = data_of_batch["alignment"]
src_seq = torch.from_numpy(src_seq).long().to(device)
src_pos = torch.from_numpy(src_pos).long().to(device)
mel_tgt = torch.from_numpy(mel_tgt).float().to(device)
alignment_target = torch.from_numpy(
alignment_target).float().to(device)
# For Data Parallel
mel_max_len = mel_tgt.size(1)
# Forward
mel_output, mel_output_postnet, duration_predictor_output = model(
src_seq, src_pos,
mel_max_length=mel_max_len,
length_target=alignment_target)
# Cal Loss
mel_loss, mel_postnet_loss, duration_predictor_loss = fastspeech_loss(
mel_output, mel_output_postnet, duration_predictor_output, mel_tgt, alignment_target)
total_loss = mel_loss + mel_postnet_loss + duration_predictor_loss
# Logger
t_l = total_loss.item()
m_l = mel_loss.item()
m_p_l = mel_postnet_loss.item()
d_p_l = duration_predictor_loss.item()
with open(os.path.join("logger", "total_loss.txt"), "a") as f_total_loss:
f_total_loss.write(str(t_l)+"\n")
with open(os.path.join("logger", "mel_loss.txt"), "a") as f_mel_loss:
f_mel_loss.write(str(m_l)+"\n")
with open(os.path.join("logger", "mel_postnet_loss.txt"), "a") as f_mel_postnet_loss:
f_mel_postnet_loss.write(str(m_p_l)+"\n")
with open(os.path.join("logger", "duration_predictor_loss.txt"), "a") as f_d_p_loss:
f_d_p_loss.write(str(d_p_l)+"\n")
# Backward
total_loss.backward()
# Clipping gradients to avoid gradient explosion
nn.utils.clip_grad_norm_(model.parameters(), hp.grad_clip_thresh)
# Update weights
if args.frozen_learning_rate:
scheduled_optim.step_and_update_lr_frozen(
args.learning_rate_frozen)
else:
scheduled_optim.step_and_update_lr()
# Print
if current_step % hp.log_step == 0:
Now = time.clock()
str1 = "Epoch [{}/{}], Step [{}/{}], Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f};".format(
epoch+1, hp.epochs, current_step, total_step, mel_loss.item(), mel_postnet_loss.item())
str2 = "Duration Predictor Loss: {:.4f}, Total Loss: {:.4f}.".format(
duration_predictor_loss.item(), total_loss.item())
str3 = "Current Learning Rate is {:.6f}.".format(
scheduled_optim.get_learning_rate())
str4 = "Time Used: {:.3f}s, Estimated Time Remaining: {:.3f}s.".format(
(Now-Start), (total_step-current_step)*np.mean(Time))
print("\n" + str1)
print(str2)
print(str3)
print(str4)
with open(os.path.join("logger", "logger.txt"), "a") as f_logger:
f_logger.write(str1 + "\n")
f_logger.write(str2 + "\n")
f_logger.write(str3 + "\n")
f_logger.write(str4 + "\n")
f_logger.write("\n")
if current_step % hp.save_step == 0:
torch.save({'model': model.state_dict(), 'optimizer': optimizer.state_dict(
)}, os.path.join(hp.checkpoint_path, 'checkpoint_%d.pth.tar' % current_step))
print("save model at step %d ..." % current_step)
end_time = time.clock()
Time = np.append(Time, end_time - start_time)
if len(Time) == hp.clear_Time:
temp_value = np.mean(Time)
Time = np.delete(
Time, [i for i in range(len(Time))], axis=None)
Time = np.append(Time, temp_value)
if __name__ == "__main__":
# Main
parser = argparse.ArgumentParser()
parser.add_argument('--restore_step', type=int, default=0)
parser.add_argument('--frozen_learning_rate', type=bool, default=False)
parser.add_argument("--learning_rate_frozen", type=float, default=1e-3)
args = parser.parse_args()
main(args)