-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdim_eraser.py
140 lines (99 loc) · 4.29 KB
/
dim_eraser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import fire
import random
import torch
import os.path as osp
from PIL import Image
from tqdm import tqdm
from copy import deepcopy
from transformers import BlipProcessor, BlipForImageTextRetrieval
from fadata.utils import load_json, save_json, xywh_to_xyxy
from refine_prompts import *
from check_prompts import *
from utils import *
class BLIPScore:
def __init__(
self,
blip_model_path,
device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"),
torch_dtype=torch.float16
) -> None:
self.device = device
self.torch_dtype = torch_dtype
self.processor = BlipProcessor.from_pretrained(blip_model_path)
self.model = BlipForImageTextRetrieval.from_pretrained(blip_model_path, torch_dtype=torch_dtype).to(device)
def __call__(self, images, texts, head='itm'):
inputs = self.processor(images, texts, return_tensors="pt", truncation=True, padding=True).to(self.device, self.torch_dtype)
with torch.no_grad():
if head == 'itm':
itm_scores = self.model(**inputs)[0].softmax(dim=-1)[:, 1]
return itm_scores.cpu()
else:
cosine_scores = self.model(**inputs, use_itm_head=False)[0]
return cosine_scores.cpu()
def main(
llama_model_dir: str,
blip_model_dir: str,
image_root: str,
f_check_result: str,
f_erase_result: str,
n_shot: int = 4,
seed: int = 0,
):
print(f"setting random seed to {seed}")
setup_seed(seed)
score_fn = BLIPScore(blip_model_dir)
pipeline = build_language_model(llama_model_dir)
data = load_json(f_check_result)['check_items']
result_data = []
for i, _item in enumerate(tqdm(data)):
region_bbox = _item['region_anno']['bbox']
xxyy_region_bbox = xywh_to_xyxy(deepcopy(region_bbox))
image_path = osp.join(image_root, _item['image'])
image = Image.open(image_path).convert("RGB")
cropped_image = image.copy()
cropped_image = cropped_image.crop(xxyy_region_bbox)
check_dimensions, check_tuples = _item["check_dimensions"], _item["check_tuples"]
erase_desps = []
if len(check_dimensions) != 0:
ori_desp = _item["answer"]
global_score = score_fn([image], [ori_desp]).item()
local_score = score_fn([cropped_image], [ori_desp]).item()
if global_score > 0.9 and local_score > 0.9:
continue
erase_desps = [{
"edit_item": "no_edit",
"l_score": local_score,
"g_score": global_score,
"desp": ori_desp,
}]
for (edim, etp) in zip(check_dimensions, check_tuples):
erase_messages = [
{"role": "system", "content": erase_task_instruction}
]
for example in random.sample(erase_few_shot_examples, n_shot):
erase_messages.extend(
[
{"role": "user", "content": example['user']},
{"role": "assistant", "content": example['assistant']}
]
)
question = erase_question_template.format(dimension=f"{edim} {etp}", description=ori_desp)
erase_messages.append({"role": "user", "content": question})
edit_desp = generation(erase_messages, pipeline)
e_global_score = score_fn([image], [edit_desp]).item()
e_local_score = score_fn([cropped_image], [edit_desp]).item()
erase_desps.append({
"edit_item": "erase",
"l_score": e_local_score,
"g_score": e_global_score,
"desp": edit_desp,
"edim": edim,
"etp": etp
})
_item["erase_desps"] = erase_desps
result_data.append(_item)
if i % 10 == 0 and i > 0:
save_json(f_erase_result, result_data, indent=4)
save_json(f_erase_result, result_data, indent=4)
if __name__ == "__main__":
fire.Fire(main)