-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgen_story.py
255 lines (219 loc) · 9.25 KB
/
gen_story.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from models.transforms import get_object_transforms
from models.data import EvalStoryDataset, EvalPororoStoryDataset
from models.model import StoryModel
from diffusers import StableDiffusionPipeline
from transformers import CLIPTokenizer
from accelerate.utils import set_seed
from models.utils import parse_args
from accelerate import Accelerator
from pathlib import Path
from PIL import Image
import numpy as np
import torch
from torchvision import transforms
import os
from tqdm.auto import tqdm
from models.pipeline import (
stable_diffusion_call_with_references_delayed_conditioning,
)
import types
import os
import random
import re
from gill import models
from gill import utils
from torchvision import transforms
@torch.no_grad()
def main():
args = parse_args()
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
pipe = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, torch_dtype=weight_dtype
).to(accelerator.device)
pipe.set_progress_bar_config(disable=True)
pipe.safety_checker = None
pipe.requires_safety_checker = False
model = StoryModel.from_pretrained(args)
model.eval()
ckpt_name = "pytorch_model.bin"
model.load_state_dict(
torch.load(Path(args.finetuned_model_path) / ckpt_name, map_location="cpu"), strict=False
)
model = model.to(device=accelerator.device, dtype=weight_dtype)
model_dir = args.gill_ckpt
mm_llm = models.load_gill(model_dir, device=accelerator.device)
mm_llm.eval()
g_cuda = torch.Generator(device=accelerator.device).manual_seed(1337)
pipe.unet = model.unet
if args.enable_xformers_memory_efficient_attention:
pipe.unet.enable_xformers_memory_efficient_attention()
pipe.text_encoder = model.text_encoder
pipe.image_encoder = model.image_encoder
pipe.postfuse_module = model.postfuse_module
pipe.inference = types.MethodType(
stable_diffusion_call_with_references_delayed_conditioning, pipe
)
del model
# Set up the dataset
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
object_transforms = get_object_transforms(args)
if args.dataset == 'flintstones':
demo_dataset = EvalStoryDataset(
tokenizer=tokenizer,
object_transforms=object_transforms,
device=accelerator.device,
max_num_objects=args.max_num_objects,
root=args.dataset_name,
ref_image=args.ref_image,
story_len=args.story_len
)
else:
demo_dataset = EvalPororoStoryDataset(
tokenizer=tokenizer,
object_transforms=object_transforms,
device=accelerator.device,
max_num_objects=args.max_num_objects,
root=args.dataset_name,
ref_image=args.ref_image
)
os.makedirs(args.output_dir, exist_ok=True)
image_id = 's_01_e_25_shot_004015_004089'
batchs = demo_dataset.prepare_data_batch(image_id)
gen_images = []
gen_captions = batchs[0]['captions']
for idx, batch in enumerate(batchs):
prompt_llm = []
if idx == 0:
prompt_llm.append('Caption: ' + batch['captions'][idx] + ' Image: ')
else:
for i in range(idx + 1):
if i == idx:
prompt_llm.append(' Caption: ' + batch['captions'][i] + ' Image: ')
else:
prompt_llm.append(' Image: <img>')
prompt_llm.append(gen_images[i])
prompt_llm.append('</img> Caption: ' + batch['captions'][i])
input_ids = batch["input_ids"].to(accelerator.device)
image_id = batch['image_id']
image_token_mask = batch["image_token_mask"].to(accelerator.device)
all_object_pixel_values = (
batch["object_pixel_values"].unsqueeze(0).to(accelerator.device)
)
num_objects = batch["num_objects"].unsqueeze(0).to(accelerator.device)
all_object_pixel_values = all_object_pixel_values.to(
dtype=weight_dtype, device=accelerator.device
)
object_pixel_values = all_object_pixel_values # [:, 0, :, :, :]
if pipe.image_encoder is not None:
object_embeds = pipe.image_encoder(object_pixel_values)
else:
object_embeds = None
if idx == 0:
encoder_hidden_states = pipe.text_encoder(input_ids)[0]
encoder_hidden_states = pipe.postfuse_module(
encoder_hidden_states,
object_embeds,
image_token_mask,
num_objects,
)
start_merge_step = args.start_merge_step
else:
encoder_hidden_states, caption = mm_llm.generate_for_images_emb(prompt_llm, num_words=36, min_word_tokens=30)
encoder_hidden_states = encoder_hidden_states.half()
if batch['ref_flag']:
start_merge_step = 0
else:
start_merge_step = args.start_merge_step
encoder_hidden_states_text_only = pipe._encode_prompt(
batch['prompt_text_only'],
accelerator.device,
args.num_images_per_prompt,
do_classifier_free_guidance=False,
)
cross_attention_kwargs = {}
images = pipe.inference(
prompt_embeds=encoder_hidden_states,
num_inference_steps=args.inference_steps,
height=args.generate_height,
width=args.generate_width,
guidance_scale=args.guidance_scale,
num_images_per_prompt=args.num_images_per_prompt,
cross_attention_kwargs=cross_attention_kwargs,
prompt_embeds_text_only=encoder_hidden_states_text_only,
start_merge_step=start_merge_step,
).images
gen_images.append(images[0])
cap_img = utils.create_image_of_text(batch['prompt_text_only'],
width=args.generate_width, nrows=2, color=(255, 255, 0))
image = transforms.ToTensor()(images[0])
image = torch.cat([image, cap_img], dim=1)
pil_image = transforms.ToPILImage()(image)
pil_image.save(os.path.join(args.output_dir, f"{image_id}.png"))
max_length = 10
gen_caption_flag = True
while len(gen_images) < max_length:
prompt_llm = []
if gen_caption_flag:
for i in range(len(gen_captions) - 4, len(gen_captions)):
prompt_llm.append('Caption: ' + gen_captions[i])
prompt_llm.append(f' Generate the next frame description of cartoon Flintstones based on the previous captions. The new generation should be different from the previous captions.')
else:
for i in range(len(gen_images) - 4, len(gen_images)):
prompt_llm.append(' Image: <img>')
prompt_llm.append(gen_images[i])
prompt_llm.append('</img> Caption: ' + gen_captions[i])
prompt_llm.append(f' Caption: {gen_captions[-1]} Image: ')
if gen_caption_flag:
encoder_hidden_states, caption = mm_llm.generate_for_images_emb(prompt_llm, num_words=36, min_word_tokens=30)
caption = caption.replace('\n', '')
index = caption.find("[IMG")
if index != -1:
caption = caption[:index]
index = caption.find(".")
if index != -1:
caption = caption[:index+1]
index = caption.find(":")
if index != -1:
caption = caption[index+1:]
caption = caption.strip()
gen_captions.append(caption)
gen_caption_flag = False
else:
encoder_hidden_states, caption = mm_llm.generate_for_images_emb(prompt_llm, num_words=2)
encoder_hidden_states = encoder_hidden_states.half()
images = pipe.inference(
prompt_embeds=encoder_hidden_states,
num_inference_steps=args.inference_steps,
height=args.generate_height,
width=args.generate_width,
guidance_scale=args.guidance_scale,
num_images_per_prompt=args.num_images_per_prompt,
cross_attention_kwargs=cross_attention_kwargs,
prompt_embeds_text_only=encoder_hidden_states,
start_merge_step=0,
).images
gen_images.append(images[0])
gen_caption_flag = True
cap_img = utils.create_image_of_text(gen_captions[-1], width=args.generate_width, nrows=2, color=(255, 255, 0))
image = transforms.ToTensor()(images[0])
image = torch.cat([image, cap_img], dim=1)
pil_image = transforms.ToPILImage()(image)
pil_image.save(os.path.join(args.output_dir, f"{len(gen_images)}.png"))
if __name__ == "__main__":
main()