-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_use_text.py
85 lines (64 loc) · 2.95 KB
/
save_use_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import pandas as pd
import joblib
import tensorflow as tf
import tensorflow_hub as hub
import gc
import numpy as np
import logging
logger = logging.getLogger(__name__)
USE_MODULE_URL = "https://tfhub.dev/google/universal-sentence-encoder/2"
USE_EMBED = hub.Module(USE_MODULE_URL, trainable=False)
def get_USE(col_series, session):
logger.info('Converting to USE....')
try:
use_embedded = session.run(USE_EMBED(col_series))
except TypeError:
use_embedded = session.run(USE_EMBED(col_series.values))
#end try
#end with
return use_embedded
#end def
def main():
log_level = 'DEBUG'
log_format = '%(asctime)-15s [%(name)s-%(process)d] %(levelname)s: %(message)s'
logging.basicConfig(format=log_format, level=logging.getLevelName(log_level))
logger.info('Loading in data')
train_df = pd.read_csv('data/train_processed.csv')
# train_df = train_df[:4000]
test_df = pd.read_csv('data/test_processed.csv')
# test_df = test_df[:4000]
string_features = [
'project_title',
'project_essay_1',
'project_essay_2',
'project_essay_3',
'project_essay_4',
'project_resource_summary',
'description']
train_df[string_features] = train_df[string_features].fillna('')
test_df[string_features] = test_df[string_features].fillna('')
with tf.Session() as session:
session.run([tf.global_variables_initializer(), tf.tables_initializer()])
use_title = get_USE(train_df['project_title'], session)
use_essay1 = get_USE(train_df['project_essay_1'], session)
use_essay2 = get_USE(train_df['project_essay_2'], session)
use_essay3 = get_USE(train_df['project_essay_3'], session)
use_essay4 = get_USE(train_df['project_essay_4'], session)
use_resource_summary = get_USE(train_df['project_resource_summary'], session)
use_description = get_USE(train_df['description'], session)
train_text = np.hstack([use_title, use_essay1, use_essay2, use_essay3, use_essay4, use_resource_summary, use_description])
use_title = get_USE(test_df['project_title'], session)
use_essay1 = get_USE(test_df['project_essay_1'], session)
use_essay2 = get_USE(test_df['project_essay_2'], session)
use_essay3 = get_USE(test_df['project_essay_3'], session)
use_essay4 = get_USE(test_df['project_essay_4'], session)
use_resource_summary = get_USE(test_df['project_resource_summary'], session)
use_description = get_USE(test_df['description'], session)
#end with
test_text = np.hstack([use_title, use_essay1, use_essay2, use_essay3, use_essay4, use_resource_summary, use_description])
del use_title, use_essay1, use_essay2, use_essay3, use_essay4, use_resource_summary, use_description
gc.collect()
joblib.dump(train_text, 'data/train_use.joblib', compress=True)
joblib.dump(test_text, 'data/test_use.joblib', compress=True)
#end def
if __name__ == '__main__': main()