给定二叉树根结点 root
,此外树的每个结点的值要么是 0,要么是 1。
返回移除了所有不包含 1 的子树的原二叉树。
( 节点 X 的子树为 X 本身,以及所有 X 的后代。)
示例1: 输入: [1,null,0,0,1] 输出: [1,null,0,null,1] 解释: 只有红色节点满足条件“所有不包含 1 的子树”。 右图为返回的答案。![]()
示例2: 输入: [1,0,1,0,0,0,1] 输出: [1,null,1,null,1]![]()
示例3: 输入: [1,1,0,1,1,0,1,0] 输出: [1,1,0,1,1,null,1]![]()
说明:
- 给定的二叉树最多有
100
个节点。 - 每个节点的值只会为
0
或1
。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def pruneTree(self, root: TreeNode) -> TreeNode:
if not root:
return None
root.left = self.pruneTree(root.left)
root.right = self.pruneTree(root.right)
if root.val == 0 and not root.left and not root.right:
return None
return root
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode pruneTree(TreeNode root) {
if (root == null) {
return null;
}
root.left = pruneTree(root.left);
root.right = pruneTree(root.right);
if (root.val == 0 && root.left == null && root.right == null) {
return null;
}
return root;
}
}
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func pruneTree(root *TreeNode) *TreeNode {
if root == nil {
return nil
}
root.Left = pruneTree(root.Left)
root.Right = pruneTree(root.Right)
if root.Val == 0 && root.Left == nil && root.Right == nil {
return nil
}
return root
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* pruneTree(TreeNode* root) {
if (!root) return nullptr;
root->left = pruneTree(root->left);
root->right = pruneTree(root->right);
if (!root->val && !root->left && !root->right) return nullptr;
return root;
}
};