Skip to content

Latest commit

 

History

History
217 lines (171 loc) · 5.8 KB

File metadata and controls

217 lines (171 loc) · 5.8 KB

English Version

题目描述

给定一个非重叠轴对齐矩形的列表 rects,写一个函数 pick 随机均匀地选取矩形覆盖的空间中的整数点。

提示:

  1. 整数点是具有整数坐标的点。
  2. 矩形周边上的点包含在矩形覆盖的空间中。
  3. i 个矩形 rects [i] = [x1,y1,x2,y2],其中 [x1,y1] 是左下角的整数坐标,[x2,y2] 是右上角的整数坐标。
  4. 每个矩形的长度和宽度不超过 2000。
  5. 1 <= rects.length <= 100
  6. pick 以整数坐标数组 [p_x, p_y] 的形式返回一个点。
  7. pick 最多被调用10000次。

 

示例 1:

输入: 
["Solution","pick","pick","pick"]
[[[[1,1,5,5]]],[],[],[]]
输出: 
[null,[4,1],[4,1],[3,3]]

示例 2:

输入: 
["Solution","pick","pick","pick","pick","pick"]
[[[[-2,-2,-1,-1],[1,0,3,0]]],[],[],[],[],[]]
输出: 
[null,[-1,-2],[2,0],[-2,-1],[3,0],[-2,-2]]

 

输入语法的说明:

输入是两个列表:调用的子例程及其参数。Solution 的构造函数有一个参数,即矩形数组 rectspick 没有参数。参数总是用列表包装的,即使没有也是如此。

 

解法

前缀和 + 二分查找。

将矩形面积求前缀和 s,然后随机获取到一个面积 v,利用二分查找定位到是哪个矩形,然后继续随机获取该矩形的其中一个整数点坐标即可。

Python3

class Solution:

    def __init__(self, rects: List[List[int]]):
        self.rects = rects
        self.s = [0] * len(rects)
        for i, (x1, y1, x2, y2) in enumerate(rects):
            self.s[i] = self.s[i - 1] + (x2 - x1 + 1) * (y2 - y1 + 1)

    def pick(self) -> List[int]:
        v = random.randint(1, self.s[-1])
        left, right = 0, len(self.s) - 1
        while left < right:
            mid = (left + right) >> 1
            if self.s[mid] >= v:
                right = mid
            else:
                left = mid + 1
        x1, y1, x2, y2 = self.rects[left]
        return [random.randint(x1, x2), random.randint(y1, y2)]


# Your Solution object will be instantiated and called as such:
# obj = Solution(rects)
# param_1 = obj.pick()

Java

class Solution {
    private int[] s;
    private int[][] rects;
    private Random random = new Random();

    public Solution(int[][] rects) {
        int n = rects.length;
        s = new int[n + 1];
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + (rects[i][2] - rects[i][0] + 1) * (rects[i][3] - rects[i][1] + 1);
        }
        this.rects = rects;
    }

    public int[] pick() {
        int n = rects.length;
        int v = 1 + random.nextInt(s[n]);
        int left = 0, right = n;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (s[mid] >= v) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        int[] rect = rects[left - 1];
        return new int[]{rect[0] + random.nextInt(rect[2] - rect[0] + 1), rect[1] + random.nextInt(rect[3] - rect[1] + 1)};
    }
}

/**
 * Your Solution object will be instantiated and called as such:
 * Solution obj = new Solution(rects);
 * int[] param_1 = obj.pick();
 */

C++

class Solution {
public:
    vector<int> s;
    vector<vector<int>> rects;

    Solution(vector<vector<int>>& rects) {
        int n = rects.size();
        s.resize(n + 1);
        for (int i = 0; i < n; ++i) s[i + 1] = s[i] + (rects[i][2] - rects[i][0] + 1) * (rects[i][3] - rects[i][1] + 1);
        this->rects = rects;
        srand(time(nullptr));
    }

    vector<int> pick() {
        int n = rects.size();
        int v = 1 + rand() % s[n];
        int left = 0, right = n;
        while (left < right)
        {
            int mid = (left + right) >> 1;
            if (s[mid] >= v) right = mid;
            else left = mid + 1;
        }
        auto& rect = rects[left - 1];
        int x = rect[0] + rand() % (rect[2] - rect[0] + 1);
        int y = rect[1] + rand() % (rect[3] - rect[1] + 1);
        return {x, y};
    }
};

/**
 * Your Solution object will be instantiated and called as such:
 * Solution* obj = new Solution(rects);
 * vector<int> param_1 = obj->pick();
 */

Go

type Solution struct {
	s     []int
	rects [][]int
}

func Constructor(rects [][]int) Solution {
	n := len(rects)
	s := make([]int, n+1)
	for i, v := range rects {
		s[i+1] = s[i] + (v[2]-v[0]+1)*(v[3]-v[1]+1)
	}
	return Solution{s, rects}
}

func (this *Solution) Pick() []int {
	n := len(this.rects)
	v := 1 + rand.Intn(this.s[len(this.s)-1])
	left, right := 0, n
	for left < right {
		mid := (left + right) >> 1
		if this.s[mid] >= v {
			right = mid
		} else {
			left = mid + 1
		}
	}
	rect := this.rects[left-1]
	x, y := rect[0]+rand.Intn(rect[2]-rect[0]+1), rect[1]+rand.Intn(rect[3]-rect[1]+1)
	return []int{x, y}
}

...