给定一个非重叠轴对齐矩形的列表 rects
,写一个函数 pick
随机均匀地选取矩形覆盖的空间中的整数点。
提示:
- 整数点是具有整数坐标的点。
- 矩形周边上的点包含在矩形覆盖的空间中。
- 第
i
个矩形rects [i] = [x1,y1,x2,y2]
,其中[x1,y1]
是左下角的整数坐标,[x2,y2]
是右上角的整数坐标。 - 每个矩形的长度和宽度不超过 2000。
1 <= rects.length <= 100
pick
以整数坐标数组[p_x, p_y]
的形式返回一个点。pick
最多被调用10000次。
示例 1:
输入: ["Solution","pick","pick","pick"] [[[[1,1,5,5]]],[],[],[]] 输出: [null,[4,1],[4,1],[3,3]]
示例 2:
输入: ["Solution","pick","pick","pick","pick","pick"] [[[[-2,-2,-1,-1],[1,0,3,0]]],[],[],[],[],[]] 输出: [null,[-1,-2],[2,0],[-2,-1],[3,0],[-2,-2]]
输入语法的说明:
输入是两个列表:调用的子例程及其参数。Solution
的构造函数有一个参数,即矩形数组 rects
。pick
没有参数。参数总是用列表包装的,即使没有也是如此。
前缀和 + 二分查找。
将矩形面积求前缀和 s,然后随机获取到一个面积 v,利用二分查找定位到是哪个矩形,然后继续随机获取该矩形的其中一个整数点坐标即可。
class Solution:
def __init__(self, rects: List[List[int]]):
self.rects = rects
self.s = [0] * len(rects)
for i, (x1, y1, x2, y2) in enumerate(rects):
self.s[i] = self.s[i - 1] + (x2 - x1 + 1) * (y2 - y1 + 1)
def pick(self) -> List[int]:
v = random.randint(1, self.s[-1])
left, right = 0, len(self.s) - 1
while left < right:
mid = (left + right) >> 1
if self.s[mid] >= v:
right = mid
else:
left = mid + 1
x1, y1, x2, y2 = self.rects[left]
return [random.randint(x1, x2), random.randint(y1, y2)]
# Your Solution object will be instantiated and called as such:
# obj = Solution(rects)
# param_1 = obj.pick()
class Solution {
private int[] s;
private int[][] rects;
private Random random = new Random();
public Solution(int[][] rects) {
int n = rects.length;
s = new int[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + (rects[i][2] - rects[i][0] + 1) * (rects[i][3] - rects[i][1] + 1);
}
this.rects = rects;
}
public int[] pick() {
int n = rects.length;
int v = 1 + random.nextInt(s[n]);
int left = 0, right = n;
while (left < right) {
int mid = (left + right) >> 1;
if (s[mid] >= v) {
right = mid;
} else {
left = mid + 1;
}
}
int[] rect = rects[left - 1];
return new int[]{rect[0] + random.nextInt(rect[2] - rect[0] + 1), rect[1] + random.nextInt(rect[3] - rect[1] + 1)};
}
}
/**
* Your Solution object will be instantiated and called as such:
* Solution obj = new Solution(rects);
* int[] param_1 = obj.pick();
*/
class Solution {
public:
vector<int> s;
vector<vector<int>> rects;
Solution(vector<vector<int>>& rects) {
int n = rects.size();
s.resize(n + 1);
for (int i = 0; i < n; ++i) s[i + 1] = s[i] + (rects[i][2] - rects[i][0] + 1) * (rects[i][3] - rects[i][1] + 1);
this->rects = rects;
srand(time(nullptr));
}
vector<int> pick() {
int n = rects.size();
int v = 1 + rand() % s[n];
int left = 0, right = n;
while (left < right)
{
int mid = (left + right) >> 1;
if (s[mid] >= v) right = mid;
else left = mid + 1;
}
auto& rect = rects[left - 1];
int x = rect[0] + rand() % (rect[2] - rect[0] + 1);
int y = rect[1] + rand() % (rect[3] - rect[1] + 1);
return {x, y};
}
};
/**
* Your Solution object will be instantiated and called as such:
* Solution* obj = new Solution(rects);
* vector<int> param_1 = obj->pick();
*/
type Solution struct {
s []int
rects [][]int
}
func Constructor(rects [][]int) Solution {
n := len(rects)
s := make([]int, n+1)
for i, v := range rects {
s[i+1] = s[i] + (v[2]-v[0]+1)*(v[3]-v[1]+1)
}
return Solution{s, rects}
}
func (this *Solution) Pick() []int {
n := len(this.rects)
v := 1 + rand.Intn(this.s[len(this.s)-1])
left, right := 0, n
for left < right {
mid := (left + right) >> 1
if this.s[mid] >= v {
right = mid
} else {
left = mid + 1
}
}
rect := this.rects[left-1]
x, y := rect[0]+rand.Intn(rect[2]-rect[0]+1), rect[1]+rand.Intn(rect[3]-rect[1]+1)
return []int{x, y}
}