Skip to content

Latest commit

 

History

History
168 lines (131 loc) · 3.2 KB

File metadata and controls

168 lines (131 loc) · 3.2 KB

English Version

题目描述

给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false

进阶:不要 使用任何内置的库函数,如  sqrt

 

示例 1:

输入:num = 16
输出:true

示例 2:

输入:num = 14
输出:false

 

提示:

  • 1 <= num <= 2^31 - 1

解法

1. 二分查找

2. 转换为数学问题

由于 n² = 1 + 3 + 5 + ... + (2n-1),对数字 num 不断减去 i (i = 1, 3, 5, ...) 直至 num 不大于 0,如果最终 num 等于 0,说明是一个有效的完全平方数。

Python3

class Solution:
    def isPerfectSquare(self, num: int) -> bool:
        left, right = 1, num
        while left < right:
            mid = (left + right) >> 1
            if mid * mid >= num:
                right = mid
            else:
                left = mid + 1
        return left * left == num
class Solution:
    def isPerfectSquare(self, num: int) -> bool:
        i = 1
        while num > 0:
            num -= i
            i += 2
        return num == 0

Java

class Solution {
    public boolean isPerfectSquare(int num) {
        long left = 1, right = num;
        while (left < right) {
            long mid = (left + right) >>> 1;
            if (mid * mid >= num) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left * left == num;
    }
}
class Solution {
    public boolean isPerfectSquare(int num) {
        for (int i = 1; num > 0; i += 2) {
            num -= i;
        }
        return num == 0;
    }
}

C++

class Solution {
public:
    bool isPerfectSquare(int num) {
        long left = 1, right = num;
        while (left < right)
        {
            long mid = left + right >> 1;
            if (mid * mid >= num) right = mid;
            else left = mid + 1;
        }
        return left * left == num;
    }
};
class Solution {
public:
    bool isPerfectSquare(int num) {
        for (int i = 1; num > 0; i += 2) num -= i;
        return num == 0;
    }
};

Go

func isPerfectSquare(num int) bool {
	left, right := 1, num
	for left < right {
		mid := (left + right) >> 1
		if mid*mid >= num {
			right = mid
		} else {
			left = mid + 1
		}
	}
	return left*left == num
}
func isPerfectSquare(num int) bool {
	for i := 1; num > 0; i += 2 {
		num -= i
	}
	return num == 0
}

...