给定一个 正整数 num
,编写一个函数,如果 num
是一个完全平方数,则返回 true
,否则返回 false
。
进阶:不要 使用任何内置的库函数,如 sqrt
。
示例 1:
输入:num = 16 输出:true
示例 2:
输入:num = 14 输出:false
提示:
1 <= num <= 2^31 - 1
1. 二分查找
2. 转换为数学问题
由于 n² = 1 + 3 + 5 + ... + (2n-1)
,对数字 num 不断减去 i (i = 1, 3, 5, ...
) 直至 num 不大于 0,如果最终 num 等于 0,说明是一个有效的完全平方数。
class Solution:
def isPerfectSquare(self, num: int) -> bool:
left, right = 1, num
while left < right:
mid = (left + right) >> 1
if mid * mid >= num:
right = mid
else:
left = mid + 1
return left * left == num
class Solution:
def isPerfectSquare(self, num: int) -> bool:
i = 1
while num > 0:
num -= i
i += 2
return num == 0
class Solution {
public boolean isPerfectSquare(int num) {
long left = 1, right = num;
while (left < right) {
long mid = (left + right) >>> 1;
if (mid * mid >= num) {
right = mid;
} else {
left = mid + 1;
}
}
return left * left == num;
}
}
class Solution {
public boolean isPerfectSquare(int num) {
for (int i = 1; num > 0; i += 2) {
num -= i;
}
return num == 0;
}
}
class Solution {
public:
bool isPerfectSquare(int num) {
long left = 1, right = num;
while (left < right)
{
long mid = left + right >> 1;
if (mid * mid >= num) right = mid;
else left = mid + 1;
}
return left * left == num;
}
};
class Solution {
public:
bool isPerfectSquare(int num) {
for (int i = 1; num > 0; i += 2) num -= i;
return num == 0;
}
};
func isPerfectSquare(num int) bool {
left, right := 1, num
for left < right {
mid := (left + right) >> 1
if mid*mid >= num {
right = mid
} else {
left = mid + 1
}
}
return left*left == num
}
func isPerfectSquare(num int) bool {
for i := 1; num > 0; i += 2 {
num -= i
}
return num == 0
}