Skip to content

Latest commit

 

History

History
98 lines (78 loc) · 7.12 KB

submission.md

File metadata and controls

98 lines (78 loc) · 7.12 KB

Camera vs. Lidar TTC

Code references for tasks 1-4

  • FP.1 Match 3D Objects: L266 of camFusion_Student.cpp.
  • FP.2 Compute Lidar-based TTC: L225 of camFusion_Student.cpp.
  • FP.3 Associate Keypoint Correspondences with Bounding Boxes: L139 of camFusion_Student.cpp.
  • FP.4 Compute Camera-based TTC: L176 of FP.4 Compute Camera-based TTC.

FP.5 : Performance Evaluation 1

Examples where the Lidar-based TTC estimate is way off - observations and argumentation.

All data observations:

LIDAR: median(prev)=8.074000, median(curr)=8.010000, TTC=12.515600  << [0] >>
LIDAR: median(prev)=7.947000, median(curr)=7.891000, TTC=14.091013  << [1] >>
LIDAR: median(prev)=7.891000, median(curr)=7.844000, TTC=16.689386  << [2] >>
LIDAR: median(prev)=7.844000, median(curr)=7.795000, TTC=15.908233  << [3] >>
LIDAR: median(prev)=7.795000, median(curr)=7.734000, TTC=12.678716
LIDAR: median(prev)=7.734000, median(curr)=7.670000, TTC=11.984351
LIDAR: median(prev)=7.670000, median(curr)=7.612000, TTC=13.124118
LIDAR: median(prev)=7.612000, median(curr)=7.554000, TTC=13.024118
LIDAR: median(prev)=7.554000, median(curr)=7.487000, TTC=11.174641
LIDAR: median(prev)=7.487000, median(curr)=7.429000, TTC=12.808601
LIDAR: median(prev)=7.429000, median(curr)=7.347000, TTC=8.959780
LIDAR: median(prev)=7.347000, median(curr)=7.274000, TTC=9.964390
LIDAR: median(prev)=7.274000, median(curr)=7.199000, TTC=9.598630
LIDAR: median(prev)=7.199000, median(curr)=7.116000, TTC=8.573525
LIDAR: median(prev)=7.116000, median(curr)=7.042000, TTC=9.516170
LIDAR: median(prev)=7.042000, median(curr)=6.969000, TTC=9.546581
LIDAR: median(prev)=6.969000, median(curr)=6.887000, TTC=8.398803

While most of the observations are rather close to each other (no immediate outliers), a few do not necessary make sense in comparison to the rest, such as [1], [2] and [3] as marked above.

Outliers:

  • Given the overall distance, the TTC of [1-3] data points should be smaller than the very first observation (marked as [0]).

Observations:

  • median() function takes care of point clouds data outliers, so the average distance seems to be calculated correctly when compared to manual distance computation (from bird eye view LIDAR visualization).
  • The possible explanation is likely to be related to the chosen velocity model which is an approximation to the relative velocity changes.
  • Generally, LIDAR measurements present a reliable source for TTC estimation even when using the velocity model.

FP.6 : Performance Evaluation 2

All data observations:

Detector Descriptor TTC
LIDAR - [12.52, 12.61, 14.09, 16.69, 15.91, 12.68, 11.98, 13.12, 13.02, 11.17, 12.81, 8.96, 9.96, 9.60, 8.57, 9.52, 9.55, 8.40, ]
BRISK BRISK [13.70, 25.27, 16.41, 17.22, 21.82, 18.82, 15.68, 15.78, 15.46, 13.55, 11.06, 12.09, 12.29, 12.20, 12.79, 11.44, 9.35, 11.90, ]
BRISK BRIEF [14.49, 12.34, 14.86, 17.78, 16.46, 16.67, 14.64, 14.40, 17.12, 11.56, 11.59, 13.25, 12.30, 11.39, 11.13, 9.60, 8.88, 10.41, ]
BRISK ORB [14.96, 23.20, 15.74, 16.69, 38.48, 27.38, 15.47, 17.37, 15.68, 12.72, 10.94, 13.29, 12.36, 12.66, 11.17, 11.57, 8.72, 12.17, ]
BRISK FREAK [13.82, 21.06, 13.10, 14.87, 23.05, 17.12, 19.55, 15.66, 16.61, 12.96, 11.97, 12.06, 12.05, 12.59, 12.60, 9.97, 8.61, 9.92, ]
BRISK AKAZE -
BRISK SIFT [15.76, 17.89, 18.39, 13.32, 34.55, 20.08, 15.07, 16.61, 17.21, 13.85, 13.63, 13.11, 14.78, 11.27, 14.76, 10.56, 9.66, 11.06, ]
ORB BRISK [16.73, -inf, 12.77, 18.06, 4008144.94, 18.12, -inf, 14.64, -inf, -inf, 8.51, -inf, 16.08, 20.05, 16.84, 12.30, 13.05, 36.31, ]
ORB BRIEF [20.18, -inf, 22.58, 14.13, 36.23, 10.13, -inf, -inf, -inf, 34.34, 24.59, 21.32, -inf, 20.17, 13.74, 9.37, 15.42, 16.81, ]
ORB ORB [12.18, -inf, 18.53, 30.38, -inf, -inf, -inf, -inf, -inf, 247.70, 8.02, -inf, 28.53, 38.83, 26.19, 16.84, 15.75, 245.09, ]
ORB FREAK [9.32, 47.92, 11.11, 11.37, -inf, 19.89, -inf, 9.53, -inf, -inf, 10.70, 22.56, 8.95, 54.18, 9.32, 7.31, 8.86, 8.82, ]
ORB AKAZE -
ORB SIFT [12.84, 20.89, 12.36, 44.29, -inf, -inf, -inf, 11.98, -inf, -inf, 8.29, -inf, 9.32, 17.72, 12.74, 9.50, 12.58, 24.87, ]
AKAZE BRISK [13.31, 13.92, 14.72, 14.98, 14.39, 15.34, 16.61, 14.11, 15.20, 13.20, 13.24, 11.15, 10.19, 9.80, 10.47, 11.77, 9.29, 9.02, ]
AKAZE BRIEF [13.59, 15.11, 13.06, 15.22, 15.06, 13.44, 16.18, 14.55, 14.24, 12.06, 12.77, 10.86, 10.31, 10.58, 10.07, 9.93, 9.51, 9.26, ]
AKAZE ORB [12.26, 13.50, 13.61, 14.18, 14.03, 13.77, 15.61, 14.11, 12.87, 12.38, 11.94, 10.81, 10.54, 12.76, 11.82, 10.61, 9.29, 8.43, ]
AKAZE FREAK [12.83, 13.81, 14.55, 15.53, 16.05, 16.29, 16.34, 13.45, 13.66, 12.08, 12.28, 11.23, 11.53, 10.07, 9.83, 9.61, 9.35, 9.07, ]
AKAZE AKAZE [12.45, 15.04, 13.06, 14.81, 14.70, 17.12, 15.74, 13.79, 14.61, 12.00, 12.27, 11.60, 11.08, 11.35, 10.00, 10.04, 9.42, 9.26, ]
AKAZE SIFT [12.66, 14.61, 13.66, 15.02, 15.16, 17.02, 15.41, 13.73, 14.52, 12.23, 12.24, 11.70, 10.70, 10.91, 10.93, 10.08, 9.18, 9.55, ]
SIFT BRISK [12.42, 13.11, 15.29, 17.56, 16.45, 11.86, 15.17, 14.70, 13.23, 11.66, 11.75, 10.62, 8.81, 9.13, 8.96, 8.36, 8.94, 9.02, ]
SIFT BRIEF [12.16, 14.82, 14.67, 17.77, 14.94, 13.74, 15.09, 14.89, 13.02, 11.52, 11.75, 11.11, 8.83, 9.48, 8.84, 8.13, 8.47, 9.91, ]
SIFT ORB -
SIFT FREAK [14.33, 13.33, 13.50, 19.29, 15.22, 11.74, 16.73, 15.24, 13.46, 12.17, 13.07, 10.45, 8.72, 9.65, 9.74, 8.34, 8.51, 10.51, ]
SIFT AKAZE -
SIFT SIFT [11.49, 12.87, 12.92, 17.11, 13.89, 12.19, 13.34, 14.18, 13.40, 10.66, 10.90, 10.62, 9.10, 9.22, 8.88, 8.44, 8.10, 7.99, ]
FAST BRISK [16.75, 11.94, 12.42, 14.97, 26.47, 13.50, 14.84, 14.20, 13.17, 15.42, 10.40, 12.65, 10.87, 11.39, 9.20, 9.85, 9.42, 9.54, ]
FAST BRIEF [12.22, 13.25, 12.34, 16.72, 16.08, 15.06, 16.99, 13.17, 14.49, 14.15, 11.69, 11.37, 10.20, 9.83, 10.70, 8.92, 9.27, 9.15, ]
FAST ORB [10.20, 12.45, 21.48, 13.79, 13.99, 13.37, 13.21, 13.15, 15.23, 15.02, 11.21, 11.98, 11.28, 10.04, 9.44, 9.27, 9.56, 10.33, ]
FAST FREAK [12.40, 12.37, 12.09, 15.49, 12.40, 12.27, 13.01, 12.35, 15.02, 13.30, 10.78, 12.45, 11.18, 11.06, 8.65, 9.57, 9.02, 9.16, ]
FAST AKAZE -
FAST SIFT [15.52, 11.38, 15.26, 38.28, 15.83, 13.41, 12.87, 13.99, 14.62, 16.55, 12.20, 11.87, 11.93, 10.91, 10.37, 9.93, 9.95, 10.25, ]

Outliers:

  • When the ratio is 1, it signifies there will never be collision (TTC = inf), or values can get pretty large for when vehicles move in similar velocities.
  • Potential reason: the ratio is a small difference and even small deviations create a large impact on the TTC estimation. Relying on ration requires highest possible precision when it comes to feature calculation. It is much safer to rely on LIDAR for exact this reason as the distance measurements are ingrained into pointcloud data nature.

Performance summary:

  • SIFT-SIFT provided the best performance among all the detectors-descriptors pairs.
  • Other best performing pairs are: FAST-FREAK and most of AKAZE-* pairs.

Selected best performing pairs vs. TTC of LIDAR:

plot