-
Notifications
You must be signed in to change notification settings - Fork 8
/
test_model.py
179 lines (144 loc) · 6.58 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
test_model.py: testing script
"""
import argparse
import datetime
import os
import random
import cv2
import matplotlib
import numpy as np
import torch
from matplotlib import pyplot as plt
from crowd_dataset import CrowdDataset
from models import Stage2CountingNet, load_net, set_batch_norm_to_eval
matplotlib.use('Agg')
parser = argparse.ArgumentParser(description='Test CSS-CCNN Model')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--gpu', default=1, type=int,
help='GPU number')
parser.add_argument('-b', '--batch-size', default=4, type=int, metavar='N',
help='mini-batch size (default: 4),only used for train')
parser.add_argument('--patches', default=1, type=int, metavar='N',
help='number of patches per image')
parser.add_argument('--dataset', default="parta", type=str,
help='dataset to train on')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
metavar='M', help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W',
help='weight decay (default: 1e-4)')
parser.add_argument('--trained-model', default='', type=str, metavar='PATH', help='filename of model to load',
nargs='+')
parser.add_argument('--loss', default='sinkhorn', type=str, help="loss to use: mse or sinkhorn")
parser.add_argument('--kernel_size', default=8, type=int, help="kernel size for summing counts")
parser.add_argument('--sinkhorn_epsilon', default=0.1, type=float, help="entropy regularisation weight in sinkhorn")
parser.add_argument('--sinkhorn_batch_size', default=4, type=int, help="points to sample from distribution")
parser.add_argument('--sinkhorn_iterations', default=1000, type=int, help="no of iterations in sinkhorn")
parser.add_argument('--best_model_name', default=None, type=str, help="name of the best model checkpoint")
sampled_GT = None
def log(f, txt, do_print=1):
txt = str(datetime.datetime.now()) + ': ' + txt
if do_print == 1:
print(txt)
f.write(txt + '\n')
def get_filename(net_name, epochs_over):
return net_name + "_epoch_" + str(epochs_over) + ".pth"
def print_graph(maps, title, save_path):
fig = plt.figure()
st = fig.suptitle(title)
for i, (map, args) in enumerate(maps):
plt.subplot(1, len(maps), i + 1)
if len(map.shape) > 2 and map.shape[0] == 3:
plt.imshow(map.transpose((1, 2, 0)).astype(np.uint8),aspect='equal', **args)
else:
plt.imshow(map, aspect='equal', **args)
plt.axis('off')
plt.savefig(save_path + ".png", bbox_inches='tight', pad_inches = 0)
fig.clf()
plt.clf()
plt.close()
@torch.no_grad()
def test_function(X, Y, network):
X = torch.autograd.Variable(torch.from_numpy(X)).cuda()
Y = torch.autograd.Variable(torch.from_numpy(Y)).cuda()
network = network.cuda()
network.eval()
output = network(X) # (B,1,h,w)
count_error = torch.abs(torch.sum(Y.view(Y.size(0), -1), dim=1) - torch.sum(output.view(output.size(0), -1), dim=1))
network.train()
network = set_batch_norm_to_eval(network)
return output.cpu().detach().numpy(), count_error.cpu().detach().numpy()
def test_network(dataset, set_name, network, print_output=False):
if isinstance(print_output, str):
print_path = print_output
elif isinstance(print_output, bool) and print_output:
print_path = './models_stage_2/dump'
else:
print_path = None
count_error_list = []
for idx, data in enumerate(dataset.test_get_data(set_name)):
image_name, Xs, Ys = data
image = Xs[0].transpose((1, 2, 0))
image = cv2.resize(image, (image.shape[1] // output_downscale, image.shape[0] // output_downscale))
pred_dmap, count_error = test_function(Xs, Ys, network)
max_val = max(np.max(pred_dmap[0, 0].reshape(-1)), np.max(Ys[0, 0].reshape(-1)))
maps = [(np.transpose(image,(2,0,1)), {}),
(pred_dmap[0,0], {'cmap': 'jet', 'vmin': 0., 'vmax': max_val}),
(Ys[0,0], {'cmap': 'jet', 'vmin': 0., 'vmax': max_val})]
count_error_list.append(count_error)
if print_path:
print_graph(maps, "Gt:{},Pred:{}".format(np.sum(Ys),np.sum(pred_dmap)), os.path.join(print_path, image_name))
mae = np.mean(count_error_list)
mse = np.sqrt(np.mean(np.square(count_error_list)))
return {'mae':mae, 'mse': mse}, mae
def train_network():
network = Stage2CountingNet()
model_save_dir = './models_stage_2'
model_save_path = os.path.join(model_save_dir, 'train2')
if not os.path.exists(model_save_path):
os.makedirs(model_save_path)
os.makedirs(os.path.join(model_save_path, 'snapshots'))
os.makedirs(os.path.join(model_save_dir,'dump'))
os.makedirs(os.path.join(model_save_dir,'dump_test'))
global f
snapshot_path = os.path.join(model_save_path, 'snapshots')
network = load_net(network, snapshot_path, get_filename(network.name, args.best_model_name))
print(network)
epoch_test_losses, mae = test_network(dataset, 'test', network, print_output=os.path.join(model_save_dir,'dump_test'))
print('TEST mae, mse:' + str(epoch_test_losses))
return
if __name__ == '__main__':
args = parser.parse_args()
# -- Assign GPU
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
# -- Assertions
assert (args.dataset)
# -- Setting seeds for reproducability
np.random.seed(11)
random.seed(11)
torch.manual_seed(11)
torch.backends.cudnn.enabled = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.cuda.manual_seed(11)
torch.cuda.manual_seed_all(11)
# -- Dataset paths
if args.dataset == "parta":
validation_set = 30
output_downscale = 8
path = '../../dataset/ST_partA/'
elif args.dataset == "ucfqnrf":
validation_set = 240
output_downscale = 8
path = "../../dataset/UCF-QNRF_ECCV18"
model_save_dir = './models'
batch_size = args.batch_size
dataset = CrowdDataset(path, name=args.dataset, valid_set_size=validation_set,
gt_downscale_factor=output_downscale)
print(dataset.data_files['test_valid'], len(dataset.data_files['test_valid']))
print(dataset.data_files['train'], len(dataset.data_files['train']))
# -- Train the model
train_network()