forked from buriburisuri/timeseries_gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
140 lines (112 loc) · 3.43 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# -*- coding: utf-8 -*-
import sugartensor as tf
import numpy as np
import matplotlib.pyplot as plt
__author__ = '[email protected]'
# set log level to debug
tf.sg_verbosity(10)
#
# hyper parameters
#
batch_size = 32 # batch size
num_category = 10 # category variable number
num_cont = 2 # continuous variable number
num_dim = 30 # total latent dimension ( category + continuous + noise )
#
# Data loading
#
# load data
x = np.genfromtxt('asset/data/sample.csv', delimiter=',', dtype=np.float32)
x = x[1:, 1:]
window = 384 # window size
max = 3000 # max value
# delete zero pad data
n = ((np.where(np.any(x, axis=1))[0][-1] + 1) // window) * window
# normalize data between 0 and 1
x = x[:n] / max
# make to matrix
X = np.asarray([x[i:i+window] for i in range(n-window)])
X = np.expand_dims(X, axis=2)
num_batch = X.shape[0] // batch_size
#
# inputs place holder
#
ph = tf.sg_input(shape=(window, 1, 2))
#
# create generator
#
# dummy place holder
z = tf.sg_input(num_dim)
# generator network
with tf.sg_context(name='generator', size=(4, 1), stride=(2, 1), act='relu', bn=True):
gen = (z.sg_dense(dim=1024)
.sg_dense(dim=48*1*128)
.sg_reshape(shape=(-1, 48, 1, 128))
.sg_upconv(dim=64)
.sg_upconv(dim=32)
.sg_upconv(dim=2, act='sigmoid', bn=False))
#
# create discriminator & recognizer
#
with tf.sg_context(name='discriminator', size=(4, 1), stride=(2, 1), act='leaky_relu'):
# shared part
shared = (ph.sg_conv(dim=32)
.sg_conv(dim=64)
.sg_conv(dim=128)
.sg_flatten()
.sg_dense(dim=1024))
# shared recognizer part
recog_shared = shared.sg_dense(dim=128)
# discriminator end
disc = shared.sg_dense(dim=1, act='linear').sg_squeeze()
# categorical recognizer end
recog_cat = recog_shared.sg_dense(dim=num_category, act='softmax')
# continuous recognizer end
recog_cont = recog_shared.sg_dense(dim=num_cont, act='sigmoid')
#
# run discrimination
#
with tf.Session() as sess:
# init session
tf.sg_init(sess)
# restore parameters
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('asset/train/ckpt'))
# run recoginizer
cats, conts = [], []
for i in range(0, len(X), batch_size):
a, b = sess.run([recog_cat, recog_cont], {ph: X[i:i+batch_size]})
cats.append(a)
conts.append(b)
tf.sg_debug('%d/%d processed.' % (i/batch_size + 1, num_batch))
# to numpy array
cats = np.argmax(np.concatenate(cats, axis=0), axis=1) # we take max value.
conts = np.concatenate(conts, axis=0)
#
# Plotting result
#
##
colors = [(0, 0, 0.5), (0, 0, 1), (0, 0.5, 0), (0, 0.5, 0.5), (0, 0.5, 1),
(0, 1, 0), (0, 1, 0.5), (0, 1, 1), (0.5, 0, 0), (0.5, 0, 0.5)]
_, ax = plt.subplots(2, 1, sharex=True, sharey=True)
# plot original time series
ax[0].plot(x)
ax[0].set_title('original time series')
ax[0].set_xlabel('time')
ax[0].set_ylabel('normalized value')
ax[0].grid()
# coloring category division
i_prev = 0
for i in np.where(np.diff(cats))[0]:
ax[0].axvspan(i_prev + window/2, i + window/2, facecolor=colors[cats[i]], alpha=0.2)
i_prev = i + 1
# plot continous factors
ax[1].plot(np.arange(len(conts))+window/2, conts)
ax[1].set_title('decomposed continuous factors')
ax[1].set_xlabel('time')
ax[1].set_ylabel('normalized value')
ax[1].grid()
# save plot
plt.savefig('asset/train/classify.png', dpi=600)
# show plot
plt.show()