-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmain.py
368 lines (304 loc) · 16.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import argparse
import random
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import actnn
from actnn import config, QScheme, QModule
try:
# from apex.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from apex.fp16_utils import *
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")
from image_classification.smoothing import LabelSmoothing
from image_classification.mixup import NLLMultiLabelSmooth, MixUpWrapper
from image_classification.dataloaders import *
from image_classification.training import *
from image_classification.utils import *
def add_parser_arguments(parser):
model_names = models.resnet_versions.keys()
model_configs = models.resnet_configs.keys()
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--dataset', type=str, default='imagenet')
parser.add_argument('--data-backend', metavar='BACKEND', default='pytorch',
choices=DATA_BACKEND_CHOICES)
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('--model-config', '-c', metavar='CONF', default='fanin',
choices=model_configs,
help='model configs: ' +
' | '.join(model_configs) + '(default: classic)')
parser.add_argument('-j', '--workers', default=5, type=int, metavar='N',
help='number of data loading workers (default: 5)')
parser.add_argument('--num-classes', default=1000, type=int, metavar='N',
help='number of classes (default: 1000)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N', help='mini-batch size (default: 256) per gpu')
parser.add_argument('--optimizer-batch-size', default=-1, type=int,
metavar='N', help='size of a total batch size, for simulating bigger batches')
parser.add_argument('--lr', '--learning-rate', default=0.512, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--lr-schedule', default='cosine', type=str, metavar='SCHEDULE', choices=['step','linear','cosine'])
parser.add_argument('--warmup', default=4, type=int,
metavar='E', help='number of warmup epochs')
parser.add_argument('--label-smoothing', default=0.1, type=float,
metavar='S', help='label smoothing')
parser.add_argument('--mixup', default=0.0, type=float,
metavar='ALPHA', help='mixup alpha')
parser.add_argument('--momentum', default=0.875, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=3.0517578125e-05, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--bn-weight-decay', action='store_true',
help='use weight_decay on batch normalization learnable parameters, default: false)')
parser.add_argument('--nesterov', action='store_true',
help='use nesterov momentum, default: false)')
parser.add_argument('--print-freq', '-p', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--resume2', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained-weights', default='', type=str, metavar='PATH',
help='load weights from here')
parser.add_argument('--fp16', action='store_true',
help='Run model fp16 mode.')
parser.add_argument('--static-loss-scale', type=float, default=1,
help='Static loss scale, positive power of 2 values can improve fp16 convergence.')
parser.add_argument('--dynamic-loss-scale', action='store_true',
help='Use dynamic loss scaling. If supplied, this argument supersedes ' +
'--static-loss-scale.')
parser.add_argument('--prof', type=int, default=-1,
help='Run only N iterations')
parser.add_argument('--amp', action='store_true',
help='Run model AMP (automatic mixed precision) mode.')
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument('--seed', default=None, type=int,
help='random seed used for np and pytorch')
parser.add_argument('--gather-checkpoints', action='store_true',
help='Gather checkpoints throughout the training')
parser.add_argument('--raport-file', default='raport.json', type=str,
help='file in which to store JSON experiment raport')
parser.add_argument('--final-weights', default='model.pth.tar', type=str,
help='file in which to store final model weights')
parser.add_argument('--evaluate', action='store_true', help='evaluate checkpoint/model')
parser.add_argument('--training-only', action='store_true', help='do not evaluate')
parser.add_argument('--no-checkpoints', action='store_false', dest='save_checkpoints')
parser.add_argument('--workspace', type=str, default='./')
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser.add_argument('--ca', type=str2bool, default=True, help='compress activation')
parser.add_argument('--sq', type=str2bool, default=True, help='stochastic quantization')
parser.add_argument('--cabits', type=float, default=8, help='activation number of bits')
parser.add_argument('--qat', type=int, default=8, help='quantization aware training bits')
parser.add_argument('--ibits', type=int, default=8, help='Initial precision for the allocation algorithm')
parser.add_argument('--actnn-level', type=str, default='L3', help='Optimization level for ActNN')
# parser.add_argument('--pergroup', type=str2bool, default=True, help='Per-group range')
parser.add_argument('--groupsize', type=int, default=256, help='Size for each quantization group')
# parser.add_argument('--perlayer', type=str2bool, default=True, help='Per layer quantization')
parser.add_argument('--usegradient', type=str2bool, default=False, help='Using gradient information for persample')
def main(args):
actnn.set_optimization_level(args.actnn_level)
# Note: we use these flags for debugging. Users may simply use "actnn.set_optimization_level"
# config.compress_activation = args.ca
config.stochastic = args.sq
config.qat = args.qat
config.use_gradient = args.usegradient
config.group_size = args.groupsize
exp_start_time = time.time()
global best_prec1
best_prec1 = 0
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
args.gpu = 0
args.world_size = 1
if args.distributed:
args.gpu = args.local_rank % torch.cuda.device_count()
torch.cuda.set_device(args.gpu)
dist.init_process_group(backend='nccl', init_method='env://')
args.world_size = torch.distributed.get_world_size()
if args.amp and args.fp16:
print("Please use only one of the --fp16/--amp flags")
exit(1)
if args.seed is not None:
print("Using seed = {}".format(args.seed))
torch.manual_seed(args.seed + args.local_rank)
torch.cuda.manual_seed(args.seed + args.local_rank)
np.random.seed(seed=args.seed + args.local_rank)
random.seed(args.seed + args.local_rank)
def _worker_init_fn(id):
np.random.seed(seed=args.seed + args.local_rank + id)
random.seed(args.seed + args.local_rank + id)
else:
def _worker_init_fn(id):
pass
if args.fp16:
assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."
if args.static_loss_scale != 1.0:
if not args.fp16:
print("Warning: if --fp16 is not used, static_loss_scale will be ignored.")
if args.optimizer_batch_size < 0:
batch_size_multiplier = 1
else:
tbs = args.world_size * args.batch_size
if args.optimizer_batch_size % tbs != 0:
print("Warning: simulated batch size {} is not divisible by actual batch size {}".format(args.optimizer_batch_size, tbs))
batch_size_multiplier = int(args.optimizer_batch_size/ tbs)
print("BSM: {}".format(batch_size_multiplier))
pretrained_weights = None
if args.pretrained_weights:
if os.path.isfile(args.pretrained_weights):
print("=> loading pretrained weights from '{}'".format(args.pretrained_weights))
pretrained_weights = torch.load(args.pretrained_weights)
else:
print("=> no pretrained weights found at '{}'".format(args.resume))
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model_state = checkpoint['state_dict']
optimizer_state = checkpoint['optimizer']
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
model_state = None
optimizer_state = None
else:
model_state = None
optimizer_state = None
if args.resume2:
if os.path.isfile(args.resume2):
print("=> loading checkpoint '{}'".format(args.resume2))
checkpoint2 = torch.load(args.resume2, map_location=lambda storage, loc: storage.cuda(args.gpu))
model_state2 = checkpoint2['state_dict']
else:
model_state2 = None
else:
model_state2 = None
# Create data loaders and optimizers as needed
if args.dataset == 'cifar10':
get_train_loader = get_pytorch_train_loader_cifar10
get_val_loader = get_pytorch_val_loader_cifar10
get_debug_loader = get_pytorch_debug_loader_cifar10
QScheme.num_samples = 50000 # NOTE: only needed for use_gradient
elif args.data_backend == 'pytorch':
get_train_loader = get_pytorch_train_loader
get_val_loader = get_pytorch_val_loader
get_debug_loader = get_pytorch_val_loader
QScheme.num_samples = 1300000 # NOTE: only needed for use_gradient
elif args.data_backend == 'dali-gpu':
get_train_loader = get_dali_train_loader(dali_cpu=False)
get_val_loader = get_dali_val_loader()
elif args.data_backend == 'dali-cpu':
get_train_loader = get_dali_train_loader(dali_cpu=True)
get_val_loader = get_dali_val_loader()
loss = nn.CrossEntropyLoss
if args.mixup > 0.0:
loss = lambda: NLLMultiLabelSmooth(args.label_smoothing)
elif args.label_smoothing > 0.0:
loss = lambda: LabelSmoothing(args.label_smoothing)
model_and_loss = ModelAndLoss(
(args.arch, args.model_config),
args.num_classes,
loss,
pretrained_weights=pretrained_weights,
cuda = True, fp16 = args.fp16)
train_loader, train_loader_len = get_train_loader(args.data, args.batch_size, args.num_classes, args.mixup > 0.0, workers=args.workers, fp16=args.fp16)
if args.mixup != 0.0:
train_loader = MixUpWrapper(args.mixup, args.num_classes, train_loader)
val_loader, val_loader_len = get_val_loader(args.data, args.batch_size, args.num_classes, False, workers=args.workers, fp16=args.fp16)
debug_loader, debug_loader_len = get_debug_loader(args.data, args.batch_size, args.num_classes, False, workers=args.workers, fp16=args.fp16)
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
logger_backends = [
log.JsonBackend(os.path.join(args.workspace, args.raport_file), log_level=1),
log.StdOut1LBackend(train_loader_len, val_loader_len, args.epochs, log_level=0),
]
try:
import wandb
wandb.init(project="actnn", config=args, name=args.workspace)
logger_backends.append(log.WandbBackend(wandb))
print('Logging to wandb...')
except ImportError:
print('Wandb not found, logging to stdout and json...')
logger = log.Logger(args.print_freq, logger_backends)
for k, v in args.__dict__.items():
logger.log_run_tag(k, v)
else:
logger = None
optimizer = get_optimizer(list(model_and_loss.model.named_parameters()),
args.fp16,
args.lr, args.momentum, args.weight_decay,
nesterov = args.nesterov,
bn_weight_decay = args.bn_weight_decay,
# state=optimizer_state,
static_loss_scale = args.static_loss_scale,
dynamic_loss_scale = args.dynamic_loss_scale)
def new_optimizer():
return get_optimizer(list(model_and_loss.model.named_parameters()),
args.fp16,
args.lr, args.momentum, args.weight_decay,
nesterov = args.nesterov,
bn_weight_decay = args.bn_weight_decay,
# state=optimizer_state,
static_loss_scale = args.static_loss_scale,
dynamic_loss_scale = args.dynamic_loss_scale)
if args.lr_schedule == 'step':
lr_policy = lr_step_policy(args.lr, [30,60,80], 0.1, args.warmup, logger=logger)
elif args.lr_schedule == 'cosine':
lr_policy = lr_cosine_policy(args.lr, args.warmup, args.epochs, logger=logger)
elif args.lr_schedule == 'linear':
lr_policy = lr_linear_policy(args.lr, args.warmup, args.epochs, logger=logger)
if args.amp:
model_and_loss, optimizer = amp.initialize(
model_and_loss, optimizer,
opt_level="O2",
loss_scale="dynamic" if args.dynamic_loss_scale else args.static_loss_scale)
if args.distributed:
model_and_loss.distributed(args.local_rank)
model_and_loss.load_model_state(model_state)
print('Start epoch {}'.format(args.start_epoch))
train_loop(
model_and_loss, optimizer, new_optimizer,
lr_policy,
train_loader, val_loader, debug_loader, args.epochs,
args.fp16, logger, should_backup_checkpoint(args), use_amp=args.amp,
batch_size_multiplier = batch_size_multiplier,
start_epoch = args.start_epoch, best_prec1 = best_prec1, prof=args.prof,
skip_training = args.evaluate, skip_validation = args.training_only,
save_checkpoints=args.save_checkpoints and not args.evaluate, checkpoint_dir=args.workspace,
model_state=model_state2)
exp_duration = time.time() - exp_start_time
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
logger.end()
print("Experiment ended")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
add_parser_arguments(parser)
args = parser.parse_args()
cudnn.benchmark = True
main(args)