-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathModuleFromCriterion.lua
42 lines (37 loc) · 1.56 KB
/
ModuleFromCriterion.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
--[[ A wrapper to turn a criterion into a module.
The gradient with respect to the target will be zero.
--]]
local ModuleFromCriterion, parent = torch.class('nn.ModuleFromCriterion','nn.Module')
function ModuleFromCriterion:__init(criterion)
self.criterion = criterion
self.output = torch.Tensor(1)
self.gradInput = {torch.Tensor(), torch.Tensor()}
end
local unpack = unpack or table.unpack -- lua52 compat
--[[ The input is a {prediction, target} pair.
The output is a tensor with one number: the criterion output.
--]]
function ModuleFromCriterion:updateOutput(input)
local prediction, target = unpack(input)
self.output[1] = self.criterion:updateOutput(prediction, target)
return self.output
end
function ModuleFromCriterion:updateGradInput(input, gradOutput)
local prediction, target = unpack(input)
local gradPrediction = self.criterion:updateGradInput(prediction, target)
if type(gradPrediction) == 'table' then
if type(self.gradInput[1]) ~= 'table' then
self.gradInput[1] = {} -- initializing to table first time if it is tensor (which it is: line 10)
for i=1, #gradPrediction do
self.gradInput[1][i] = gradPrediction[i].new() -- and putting tensors of right size inside.
end
end
for i=1, #gradPrediction do
self.gradInput[1][i]:resizeAs(gradPrediction[i]):copy(gradPrediction[i]):mul(gradOutput[1])
end
else
self.gradInput[1]:resizeAs(gradPrediction):copy(gradPrediction):mul(gradOutput[1])
end
self.gradInput[2]:resizeAs(target):zero()
return self.gradInput
end