This repository has been archived by the owner on Dec 5, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil_hashtocurve.py
529 lines (453 loc) · 13.4 KB
/
util_hashtocurve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# Copyright (c) 2022-2023 Toposware, Inc.
#
# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
# http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
# <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
# option. This file may not be copied, modified, or distributed
# except according to those terms.
"""
Utility module for hashing to curve with the optimized version
of the Simplified Shallue-van de Woestijne-Ulas method
for elliptic curves in short Weierstrass with both A and B coefficients
non-zero.
Adapted from https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/
"""
from sage.all import *
# Helper functions
def CMOV(x, y, b):
"""
Returns x if b=False; otherwise returns y
"""
return int(not bool(b))*x + int(bool(b))*y
def find_z_sswu(F, A, B):
R = F['xx']
(xx,) = R._first_ngens(1) # Polynomial ring over F
g = xx ** 3 + F(A) * xx + F(B) # y^2 = g(x) = x^3 + A * x + B
ctr = F.gen()
while True:
for Z_cand in (F(ctr), F(-ctr)):
# Criterion 1: Z is non-square in F.
if is_square(Z_cand):
continue
# Criterion 2: Z != -1 in F.
if Z_cand == F(-1):
continue
# Criterion 3: g(x) - Z is irreducible over F.
if not (g - Z_cand).is_irreducible():
continue
# Criterion 4: g(B / (Z * A)) is square in F.
if is_square(g(B / (Z_cand * A))):
return Z_cand
ctr += 1
def sgn0(x):
"""
Returns 1 if x is 'negative' (little-endian sense), else 0.
"""
ZZR = PolynomialRing(ZZ, name='XX')
degree = x.parent().degree()
if degree == 1:
# not a field extension
xi_values = (ZZ(x),)
else:
# field extension
# extract vector repr of field element (faster than x._vector_())
xi_values = ZZR(x)
sign = 0
zero = 1
# compute the sign in constant time
for i in range(0, degree):
zz_xi = xi_values[i]
# sign of this digit
sign_i = zz_xi % 2
zero_i = zz_xi == 0
# update sign and zero
sign = sign | (zero & sign_i)
zero = zero & zero_i
return sign
# cache for per-p values
sqrt_cache = {}
def square_root_random_sign(x):
a = square_root(x)
if a is not None and randint(0, 1) == 1:
return -a
return a
def square_root(x):
"""
Returns a square root defined through fixed formulas.
(non-constant-time)
"""
F = x.parent()
p = F.order()
if p % 16 == 1:
return tonelli_shanks_ct(x)
if p % 4 == 3:
if sqrt_cache.get(p) is None:
sqrt_cache[p] = (F(1),)
z = x ** ((p + 1) // 4)
if p % 8 == 5:
if sqrt_cache.get(p) is None:
sqrt_cache[p] = (F(1), F(-1).sqrt())
z = x ** ((p + 3) // 8)
elif p % 16 == 9:
if sqrt_cache.get(p) is None:
sqrt_m1 = F(-1).sqrt()
sqrt_sqrt_m1 = sqrt_m1.sqrt()
sqrt_cache[p] = (F(1), sqrt_m1, sqrt_sqrt_m1,
sqrt_sqrt_m1 * sqrt_m1)
z = x ** ((p + 7) // 16)
for mul in sqrt_cache[p]:
sqrt_cand = z * mul
if sqrt_cand ** 2 == x:
return sqrt_cand
return None
# constant-time Tonelli-Shanks
# Adapted from https://github.com/zkcrypto/jubjub/blob/master/src/fq.rs by Michael Scott.
# See also Cohen, "A Course in Computational # Algebraic Number Theory," Algorithm 1.5.1.
def tonelli_shanks_ct(x):
F = x.parent()
p = F.order()
if sqrt_cache.get(p) is None:
ts_precompute(p, F)
(c1, c3, c5) = sqrt_cache[p]
z = x ** c3
t = z * z
t = t * x
z = z * x
b = t
c = c5
for i in range(c1, 1, -1):
for j in range(1, i - 1):
b = b * b
e = b == 1
zt = z * c
z = CMOV(zt, z, e)
c = c * c
tt = t * c
t = CMOV(tt, t, e)
b = t
if z ** 2 == x:
return z
assert not x.is_square()
return None
# cache pre-computable values -- no need for CT here
def ts_precompute(p, F):
c2 = p - 1
c1 = 0
while c2 % 2 == 0:
c2 //= 2
c1 += 1
assert c2 == (p - 1) // (2 ** c1)
c4 = F.gen()
while c4.is_square():
c4 += 1
assert p == c2 * 2**c1 + 1
c3 = (c2 - 1) // 2
c5 = c4 ** c2
sqrt_cache[p] = (c1, c3, c5)
def _get_lo(q):
o = q - 1
l = 0
while o % 2 == 0:
o = o // 2
l = l + 1
assert o * 2 ** l == q - 1
return (l, o)
# This routine identifies a suitable Z in the absence of one provided by the
# caller of sqrt_checked or sqrt_ratio_straightline. When those functions are
# called from elsewhere in the codebase, callers generally provide a Z value;
# this routine's return values are only used for testing.
#
# The values returned by this routine should not be used in hash-to-curve
# implementations. Use the Z value generated by the appropriate function in
# z_selection.sage instead.
def find_Z(F):
(l, o) = _get_lo(F.order())
ctr = F.gen()
ll0 = 2 ** l
ll1 = 2 ** (l-1)
while True:
Z_cand = F(ctr)
Z_cand_o = Z_cand ** o
s2l0 = Z_cand_o ** ll0
s2l1 = Z_cand_o ** ll1
if not Z_cand.is_square():
assert s2l1 != F(1)
assert s2l0 == F(1)
return Z_cand
ctr += 1
_s_vals = {}
def _get_Z_val(F):
global _s_vals
if F in _s_vals:
return _s_vals[F]
pe = find_Z(F)
_s_vals[F] = pe
return pe
_consts = {}
def _get_consts(F, Z):
global _consts
if (F, Z) in _consts:
return _consts[(F, Z)]
q = F.order()
(l, o) = _get_lo(q)
# c1, the largest integer such that 2^c1 divides q - 1.
c1 = l
c2 = (q - 1) / (2 ** c1) # Integer arithmetic
assert c2 == o
c3 = (c2 - 1) / 2 # Integer arithmetic
c4 = 2 ** c1 - 1 # Integer arithmetic
c5 = 2 ** (c1 - 1) # Integer arithmetic
c6 = Z ** c2
c7 = Z ** ((c2 + 1) / 2)
ret = (c1, c3, c4, c5, c6, c7)
_consts[(F, Z)] = ret
return ret
def sqrt_checked(F, x, Z=None):
x = F(x)
isQR = True
order = F.order()
m = 0
r = order - 1
while r % 2 == 0:
r = r / 2
m += 1
assert 2 ** m * r == order-1, "bad initialization"
if Z is None:
Z = _get_Z_val(F)
z = x ** ((r-1)/2)
t = z * z * x # x^r
z = z * x # x^((r+1)/2)
c = Z ** r
inital_tweak_z = Z ** ((r+1)/2)
if t ** (2 ** (m-1)) != 1:
isQR = False
assert not is_square(x), "incorrect determination of squareness"
z = z*inital_tweak_z
t = t*c
for i in range(m, 1, -1):
if t ** (2 ** (i-2)) != 1:
z = z * c
t = t * c * c
c = c * c
if isQR:
assert z*z == x, "incorrect square root: %s squared is not %s" % (z, x)
if not isQR:
assert z*z == x * \
Z, "incorrect tweaked square root: %s squared is not %s" % (z, x*Z)
return (isQR, z)
def sqrt_ratio_straightline(F, u, v, Z=None):
u = F(u)
v = F(v)
if Z is None:
Z = _get_Z_val(F)
(c1, c3, c4, c5, c6, c7) = _get_consts(F, Z)
tv1 = c6
tv2 = v ** c4
tv3 = tv2 ** 2
tv3 = tv3 * v
tv5 = u * tv3
tv5 = tv5 ** c3
tv5 = tv5 * tv2
tv2 = tv5 * v
tv3 = tv5 * u
tv4 = tv3 * tv2
tv5 = tv4 ** c5
isQR = tv5 == 1
tv2 = tv3 * c7
tv5 = tv4 * tv1
tv3 = CMOV(tv2, tv3, isQR)
tv4 = CMOV(tv5, tv4, isQR)
for i in range(c1, 1, -1):
tv5 = i - 2
tv5 = 2 ** tv5
tv5 = tv4 ** tv5
e1 = tv5 == 1
tv2 = tv3 * tv1
tv1 = tv1 * tv1
tv5 = tv4 * tv1
tv3 = CMOV(tv2, tv3, e1)
tv4 = CMOV(tv5, tv4, e1)
assert (isQR, tv3) == sqrt_checked(F, u/v, Z), "incorrect sqrt_ratio"
return (isQR, tv3)
# Helper class for hashing to curve
class GenericSSWU(object):
def __init__(self, F, A, B):
self.name = "SSWU"
self.F = F
self.A = F(A)
self.B = F(B)
if self.A == 0:
raise ValueError("S-SWU requires A != 0")
if self.B == 0:
raise ValueError("S-SWU requires B != 0")
self.Z = find_z_sswu(F, F(A), F(B))
self.E = EllipticCurve(F, [F(A), F(B)])
# constants for straight-line impl
self.c1 = -F(B) / F(A)
self.c2 = -F(1) / self.Z
# values at which the map is undefined
# i.e., when Z^2 * u^4 + Z * u^2 = 0
# which is at u = 0 and when Z * u^2 = -1
self.undefs = [F(0)]
if self.c2.is_square():
ex = self.c2.sqrt()
self.undefs += [ex, -ex]
self.sqrt = square_root_random_sign
def not_straight_line(self, u):
inv0 = self.inv0
is_square = self.is_square
u = self.F(u)
A = self.A
B = self.B
Z = self.Z
tv1 = inv0(Z**2 * u**4 + Z * u**2)
x1 = (-B / A) * (1 + tv1)
if tv1 == 0:
x1 = B / (Z * A)
gx1 = x1**3 + A * x1 + B
x2 = Z * u**2 * x1
gx2 = x2**3 + A * x2 + B
if is_square(gx1):
x = x1
y = square_root(gx1)
else:
x = x2
y = square_root(gx2)
if sgn0(u) != sgn0(y):
y = -y
return (x, y)
def straight_line(self, u):
inv0 = self.inv0
is_square = self.is_square
u = self.F(u)
A = self.A
B = self.B
Z = self.Z
c1 = self.c1
c2 = self.c2
tv1 = Z * u**2
tv2 = tv1**2
x1 = tv1 + tv2
x1 = inv0(x1)
e1 = x1 == 0
x1 = x1 + 1
x1 = CMOV(x1, c2, e1) # If (tv1 + tv2) == 0, set x1 = -1 / Z
x1 = x1 * c1 # x1 = (-B / A) * (1 + (1 / (Z^2 * u^4 + Z * u^2)))
gx1 = x1**2
gx1 = gx1 + A
gx1 = gx1 * x1
gx1 = gx1 + B # gx1 = g(x1) = x1^3 + A * x1 + B
x2 = tv1 * x1 # x2 = Z * u^2 * x1
tv2 = tv1 * tv2
gx2 = gx1 * tv2 # gx2 = (Z * u^2)^3 * gx1
e2 = is_square(gx1)
x = CMOV(x2, x1, e2) # If is_square(gx1), x = x1, else x = x2
y2 = CMOV(gx2, gx1, e2) # If is_square(gx1), y2 = gx1, else y2 = gx2
y = square_root(y2)
e3 = sgn0(u) == sgn0(y) # Fix sign of y
y = CMOV(-y, y, e3)
return (x, y)
def map_to_curve(self, u):
(x1, y1) = self.straight_line(u)
(x2, y2) = self.not_straight_line(u)
assert (x1, y1) == (
x2, y2), "straight-line / non-straight-line mismatch"
return self.E((x1, y1))
def is_square(self, x):
return self.F(x).is_square()
def inv0(self, x):
if self.F(x) == self.F(0):
return self.F(0)
return self.F(1) / self.F(x)
class OptimizedSSWU:
def __init__(self, F, A, B):
self.name = "Optimized SSWU"
self.F = F
self.A = F(A)
self.B = F(B)
if self.A == 0:
raise ValueError("S-SWU requires A != 0")
if self.B == 0:
raise ValueError("S-SWU requires B != 0")
self.Z = find_z_sswu(F, F(A), F(B))
self.E = EllipticCurve(F, [F(A), F(B)])
self.ref_map = GenericSSWU(F, A, B)
self.undefs = self.ref_map.undefs
def map_to_curve(self, u):
(x1, y1) = self.straight_line(u)
(x2, y2) = self.not_straight_line(u)
assert (x1, y1) == (
x2, y2), "straight-line / non-straight-line mismatch"
return self.E((x1, y1))
def is_square(self, x):
return self.F(x).is_square()
def inv0(self, x):
if self.F(x) == self.F(0):
return self.F(0)
return self.F(1) / self.F(x)
def not_straight_line(self, u):
inv0 = self.inv0
is_square = self.is_square
u = self.F(u)
A = self.A
B = self.B
Z = self.Z
tv1 = inv0(Z ** 2 * u ** 4 + Z * u ** 2)
x1 = (-B / A) * (1 + tv1)
if tv1 == 0:
x1 = B / (Z * A)
gx1 = x1 ** 3 + A * x1 + B
x2 = Z * u ** 2 * x1
gx2 = x2 ** 3 + A * x2 + B
if is_square(gx1):
x = x1
y = square_root(gx1)
else:
x = x2
y = square_root(gx2)
if sgn0(u) != sgn0(y):
y = -y
(xp, yp, zp) = self.ref_map.map_to_curve(u)
xp = xp / zp
yp = yp / zp
assert xp == x
assert yp == y
return (x, y)
def sqrt_ratio(self, u, v):
x = self.F(u) / self.F(v)
r1 = sqrt_checked(self.F, x, self.Z)
r2 = sqrt_ratio_straightline(self.F, u, v, self.Z)
assert r1 == r2
return r2
def straight_line(self, u):
A = self.A
B = self.B
Z = self.Z
u = self.F(u)
sqrt_ratio = self.sqrt_ratio
tv1 = u ** 2
tv1 = Z * tv1
tv2 = tv1 ** 2
tv2 = tv2 + tv1
tv3 = tv2 + 1
tv3 = B * tv3
tv4 = CMOV(Z, -tv2, tv2 != 0)
tv4 = A * tv4
tv2 = tv3 ** 2
tv6 = tv4 ** 2
tv5 = A * tv6
tv2 = tv2 + tv5
tv2 = tv2 * tv3
tv6 = tv6 * tv4
tv5 = B * tv6
tv2 = tv2 + tv5
x = tv1 * tv3
(is_gx1_square, y1) = sqrt_ratio(tv2, tv6)
y = tv1 * u
y = y * y1
x = CMOV(x, tv3, is_gx1_square)
y = CMOV(y, y1, is_gx1_square)
e1 = sgn0(u) == sgn0(y)
y = CMOV(-y, y, e1)
x = x / tv4
return (x, y)