-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSklearn_NN_MLP.py
74 lines (57 loc) · 2.37 KB
/
Sklearn_NN_MLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 1 09:56:05 2022
source: https://www.pluralsight.com/guides/machine-learning-neural-networks-scikit-learn
The aim of this guide is to build a classification model to detect diabetes.
It uses sklearn MLP Classifier.
"""
# Import required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn
from sklearn.neural_network import MLPClassifier
from sklearn.neural_network import MLPRegressor
# Import necessary modules
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from math import sqrt
from sklearn.metrics import r2_score
from sklearn.metrics import balanced_accuracy_score, make_scorer
def EvaluateNN(X_train, X_test, y_train, y_test):
# Construct NN and train
mlp = MLPClassifier(hidden_layer_sizes=(8,8,8), activation='relu', solver='adam', max_iter=500)
mlp.fit(X_train,y_train)
# Predict ob both Train and Test datasets
predict_train = mlp.predict(X_train)
predict_train = predict_train.round()
predict_test = mlp.predict(X_test)
y_pred_test = mlp.predict(X_test)
y_pred_test = y_pred_test.round()
# Show statistics
ba = balanced_accuracy_score(y_test, y_pred_test)
print("Balanced Accuracy #####: ", ba)
print("Accuracy score #####: ", sklearn.metrics.accuracy_score(y_test, y_pred_test))
from sklearn.metrics import roc_auc_score
print("ROC AUC score #####: ", roc_auc_score(y_test, y_pred_test))
from sklearn.metrics import classification_report,confusion_matrix
print("Confusion matrix on Train:")
print(confusion_matrix(y_train,predict_train))
print(classification_report(y_train,predict_train))
print("Confusion matrix on Test:")
print(confusion_matrix(y_test,predict_test))
print(classification_report(y_test,predict_test))
df = pd.read_csv('diabetes.csv') #kaggle ('out' = 'diabetes')
print(df.shape)
df.describe().transpose()
# convert to X,y
target_column = ['diabetes']
predictors = list(set(list(df.columns))-set(target_column))
df[predictors] = df[predictors]/df[predictors].max()
df.describe().transpose()
X = df[predictors].values
y = df[target_column].values
# split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=40)
print(X_train.shape); print(X_test.shape)
EvaluateNN(X_train, X_test, y_train, y_test)