forked from algorithm-archivists/algorithm-archive
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft.jl
126 lines (102 loc) · 2.67 KB
/
fft.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
using FFTW
#simple DFT function
function DFT(x)
N = length(x)
# We want two vectors here for real space (n) and frequency space (k)
n = 0:N-1
k = n'
transform_matrix = exp.(-2im*pi*n*k/N)
return transform_matrix*x
end
# Implementing the Cooley-Tukey Algorithm
function cooley_tukey(x)
N = length(x)
if (N > 2)
x_odd = cooley_tukey(x[1:2:N])
x_even = cooley_tukey(x[2:2:N])
else
x_odd = x[1]
x_even = x[2]
end
n = 0:N-1
half = div(N,2)
factor = exp.(-2im*pi*n/N)
return vcat(x_odd .+ x_even .* factor[1:half],
x_odd .- x_even .* factor[1:half])
end
function bitreverse(a::Array)
# First, we need to find the necessary number of bits
digits = convert(Int,ceil(log2(length(a))))
indices = [i for i = 0:length(a)-1]
bit_indices = []
for i = 1:length(indices)
push!(bit_indices, bitstring(indices[i]))
end
# Now stripping the unnecessary numbers
for i = 1:length(bit_indices)
bit_indices[i] = bit_indices[i][end-digits:end]
end
# Flipping the bits
for i =1:length(bit_indices)
bit_indices[i] = reverse(bit_indices[i])
end
# Replacing indices
for i = 1:length(indices)
indices[i] = 0
for j = 1:digits
indices[i] += 2^(j-1) * parse(Int, string(bit_indices[i][end-j]))
end
indices[i] += 1
end
b = [float(i) for i = 1:length(a)]
for i = 1:length(indices)
b[i] = a[indices[i]]
end
return b
end
function iterative_cooley_tukey(x)
N = length(x)
logN = convert(Int,ceil(log2(length(x))))
bnum = div(N,2)
stride = 0;
x = bitreverse(x)
z = [Complex(x[i]) for i = 1:length(x)]
for i = 1:logN
stride = div(N, bnum)
for j = 0:bnum-1
start_index = j*stride + 1
y = butterfly(z[start_index:start_index + stride - 1])
for k = 1:length(y)
z[start_index+k-1] = y[k]
end
end
bnum = div(bnum,2)
end
return z
end
function butterfly(x)
N = length(x)
half = div(N,2)
n = [i for i = 0:N-1]
half = div(N,2)
factor = exp.(-2im*pi*n/N)
y = [0 + 0.0im for i = 1:length(x)]
for i = 1:half
y[i] = x[i] + x[half+i]*factor[i]
y[half+i] = x[i] - x[half+i]*factor[i]
end
return y
end
function main()
x = rand(128)
y = cooley_tukey(x)
z = iterative_cooley_tukey(x)
w = fft(x)
if(isapprox(y, w))
println("Recursive Cooley Tukey matches fft() from FFTW package.")
end
if(isapprox(z, w))
println("Iterative Cooley Tukey matches fft() from FFTW package.")
end
end
main()