forked from algorithm-archivists/algorithm-archive
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapproximate_counting.jl
67 lines (55 loc) · 1.84 KB
/
approximate_counting.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
using Test
# This function takes
# - v: value in register
# - a: a scaling value for the logarithm based on Morris's paper
# It returns n(v,a), the approximate count
function n(v, a)
a*((1+1/a)^v-1)
end
# This function takes
# - v: value in register
# - a: a scaling value for the logarithm based on Morris's paper
# It returns a new value for v
function increment(v, a)
# delta is the probability of incrementing our counter
delta = 1/(n(v+1, a)-n(v, a))
if rand() <= delta
return v + 1
else
return v
end
end
# This simulates counting and takes
# - n_items: number of items to count and loop over
# - a: a scaling value for the logarithm based on Morris's paper
# It returns n(v,a), the approximate count
function approximate_count(n_items, a)
v = 0
for i = 1:n_items
v = increment(v, a)
end
return n(v, a)
end
# This function takes
# - n_trials: the number of counting trials
# - n_items: the number of items to count to
# - a: a scaling value for the logarithm based on Morris's paper
# - threshold: the maximum percent error allowed
# It returns a true / false test value
function test_approximate_count(n_trials, n_items, a, threshold)
samples = [approximate_count(n_items, a) for i = 1:n_trials]
avg = sum(samples)/n_trials
if (abs((avg - n_items) / n_items) < threshold)
println("passed")
else
println("failed")
end
end
println("[#]\nCounting Tests, 100 trials")
println("[#]\ntesting 1,000, a = 30, 10% error")
test_approximate_count(100, 1000, 30, 0.1)
println("[#]\ntesting 12,345, a = 10, 10% error")
test_approximate_count(100, 12345, 10, 0.1)
# Note: with a lower a, we need more trials, so a higher % error here.
println("[#]\ntesting 222,222, a = 0.5, 20% error")
test_approximate_count(100, 222222, 0.5, 0.2)