-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2 extract_results_prisma_amstar.py
283 lines (240 loc) · 13.7 KB
/
2 extract_results_prisma_amstar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#%%
import os
import json
import re
import pandas as pd
from src.compare_quotes import split_interrupted_quotes, compare_quotes
# GPT-3.5
# AMSTAR: 11:107, 14:3, 12:1, 22:1
# AMSTAR rep: 11:110, 22:1, 12:1
# FULLTEXT_FOLDER = "data/prisma_amstar/fulltext/txt/"
# RESULTS_FOLDER = "docs/prisma_amstar/gpt3.5_amstar/" # _rep
# NUM_SCORES = 11
# PRISMA: 109
# FULLTEXT_FOLDER = "data/prisma_amstar/fulltext/txt/"
# RESULTS_FOLDER = "docs/prisma_amstar/gpt3.5_prisma/" # _rep
# NUM_SCORES = 27
# Claude-2 Chat
# FULLTEXT_FOLDER = "data/prisma_amstar/fulltext/pdf/txt/"
# RESULTS_FOLDER = "docs/prisma_amstar/claude2_chat_prisma_amstar/" # _rep
# NUM_SCORES = 38
# Claude-2 Chat, same prompt as GPT-3.5
# FULLTEXT_FOLDER = "data/prisma_amstar/fulltext/txt/"
# RESULTS_FOLDER = "docs/prisma_amstar/claude2_chat_gpt3.5_prompt_prisma/"
# NUM_SCORES = 27
# FULLTEXT_FOLDER = "data/prisma_amstar/fulltext/txt/"
# RESULTS_FOLDER = "docs/prisma_amstar/claude2_chat_gpt3.5_prompt_amstar/"
# NUM_SCORES = 11
# Claude-2
# FULLTEXT_FOLDER = "data/prisma_amstar/fulltext/pdf/txt/"
# RESULTS_FOLDER = "docs/prisma_amstar/claude2_prisma_amstar/" # _rep
# NUM_SCORES = 38
# GPT-4: 109 (repetition, only performed on 25% of publications)
# FULLTEXT_FOLDER = "data/prisma_amstar/fulltext/pdf/txt/"
# RESULTS_FOLDER = "docs/prisma_amstar/gpt4_prisma_amstar/" # _rep
# NUM_SCORES = 38
# Mixtral-8x7B
# FULLTEXT_FOLDER = "data/prisma_amstar/fulltext/pdf/txt/"
# mixtral_prisma_amstar_rep: 38: 91, 39: 1 (156, extraction ok)
# RESULTS_FOLDER = "docs/prisma_amstar/mixtral8x7b_prisma_amstar/" # _rep
# NUM_SCORES = 38
# Claude-3-Opus
# FULLTEXT_FOLDER = "data/prisma_amstar/fulltext/pdf/txt/"
# RESULTS_FOLDER = "docs/prisma_amstar/claude3_opus_prisma_amstar/" # _rep
# NUM_SCORES = 38
# Mixtral-8x22B
FULLTEXT_FOLDER = "data/prisma_amstar/fulltext/pdf/txt/"
RESULTS_FOLDER = "docs/prisma_amstar/mixtral8x22b_prisma_amstar/" # _rep
NUM_SCORES = 38
with open(RESULTS_FOLDER + "prompt_template/user.txt") as f:
prompt = f.read()
if os.path.isfile(RESULTS_FOLDER + "prompt_template/system.txt"):
with open(RESULTS_FOLDER + "prompt_template/system.txt") as f:
system_prompt = f.read()
prompt = system_prompt + "\n" + prompt
responses_folder = RESULTS_FOLDER + "responses/"
response_files = os.listdir(responses_folder)
response_files = list(filter(lambda x: (".txt" in x), response_files))
response_files.sort()
results = []
quote_accuracy = []
### Extract ratings ("scores"), taking into account ranges for PRISMA (e.g. "P14-P23. [NA]", compare claude2_prisma_amstar/responses/109.txt.json)
def find_scores(llm_message):
llm_scores = re.findall(r"\[(Yes|No|NA)\]", llm_message)
ranges = re.findall(r"(P(\d*)-P(\d*)\.)(.*?)\[(Yes|No|NA)\]", llm_message.replace("\n", ""))
if len(ranges):
for range in ranges:
# Add 10 to index to skip AMSTAR (ranges only observed for PRISMA)
ind = 10 + int(range[1])
llm_scores[ind:ind] = [llm_scores[ind]] * (int(range[2])-int(range[1]))
return (llm_scores)
for response_file in response_files:
id = int(response_file.split(".")[0])
llm_message = open(responses_folder + response_file).read()
if ".json" in response_file:
response_json = json.loads(llm_message)
# "choices" seems to be OpenAI's / OpenRouter's syntax
if "choices" in response_json.keys():
if "finish_reason" in response_json["choices"][0].keys() and not response_json["choices"][0]["finish_reason"] in ["stop", "stop_sequence", "eos", None]:
print(f'{response_file}\nBad finish reason: {response_json["choices"][0]["finish_reason"]}')
continue
llm_message = response_json["choices"][0]["message"]["content"]
# "content" seems to be Anthropic's syntax
else:
llm_message = response_json["content"][0]["text"]
original_llm_message = llm_message
llm_scores = find_scores(llm_message)
original_llm_scores_n = len(llm_scores)
wrong_format = []
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = re.sub(r"\[(Partial Yes|Partial|Partially|Adequate)\]", r"[\1 <added>[Yes]</added>]", llm_message)
llm_message = re.sub(r"\[(Inadequate)\]", r"[\1 <added>[No]</added>]", llm_message)
llm_message = re.sub(r"\[(Unclear|Insufficient information|It is unclear|Yes/No)\]", r"[\1 <added>[NA]</added>]", llm_message)
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("wrong-response-partial-unclear-etc")
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = re.sub(r"([A|P]\d+. )Yes(?!\w)(?!.*\[Yes\])", r"\1<added-squared-brackets>[Yes]</added-squared-brackets>", llm_message)
llm_message = re.sub(r"([A|P]\d+. )No(?!\w)(?!.*\[No\])", r"\1<added-squared-brackets>[No]</added-squared-brackets>", llm_message)
llm_message = re.sub(r"([A|P]\d+. )NA(?!\w)(?!.*\[NA\])", r"\1<added-squared-brackets>[NA]</added-squared-brackets>", llm_message)
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("missing-squared-brackets-in-numbered-list")
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = re.sub("(?<!\w)NA(?!\w)(?!.*\[NA\])", "<added-squared-brackets>[NA]</added-squared-brackets>", llm_message)
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("missing-squared-brackets-for-na")
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = re.sub(r"Not applicable(?!.*\[NA\])", "Not applicable <added>[NA]</added>", llm_message)
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("not-applicable-missing-na-in-squared-brackets")
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = re.sub(r"\n- Yes(?!\w)(?!.*\[Yes\])(?=.*\n\n|.*$)", r"\n- <added-squared-brackets>[Yes]</added-squared-brackets>", llm_message)
llm_message = re.sub(r"\n- No(?!\w)(?!.*\[No\])(?=.*\n\n|.*$)", r"\n- <added-squared-brackets>[No]</added-squared-brackets>", llm_message)
llm_message = re.sub(r"\n- NA(?!\w)(?!.*\[NA\])(?=.*\n\n|.*$)", r"\n- <added-squared-brackets>[NA]</added-squared-brackets>", llm_message)
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("missing-squared-brackets-in-unnumbered-list")
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = re.sub(r"\n- (Partial Yes|Partial|Partially|Adequate)(?!\w)(?!.*\[Yes\])", r"\n- \1 <added>[Yes]</added>", llm_message)
llm_message = re.sub(r"\n- (Inadequate)(?!\w)(?!.*\[No\])", r"\n- \1 <added>[No]</added>", llm_message)
llm_message = re.sub(r"\n- (Unclear|Insufficient information|It is unclear|Yes/No)(?!\w)(?!.*\[NA\])", r"\n- \1 <added>[NA]</added>", llm_message)
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("wrong-response-partial-unclear-etc-without-squared-brackets")
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = re.sub(r"(Yes|No|NA) *\n", r"<added-squared-brackets>[\1]</added-squared-brackets>\n", llm_message)
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("missing-squared-brackets-end-of-line")
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = re.sub(r"(Yes|No|NA) -", r"<added-squared-brackets>[\1]</added-squared-brackets> -", llm_message)
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("missing-squared-brackets-pre-dash")
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = llm_message.replace("N/A", "N/A <added>[NA]</added>")
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("missing-squared-brackets-na-with-slash")
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = llm_message.replace("[Yes,", "[<added-squared-brackets>[Yes]</added-squared-brackets>,")
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("phrase-after-yes-within-squared-brackets")
if len(llm_scores) < NUM_SCORES:
len_pre = len(llm_scores)
llm_message = re.sub("Yes", "<added-squared-brackets>[Yes]</added-squared-brackets>", llm_message)
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("missing-squared-brackets-for-yes")
# Same response twice in the same row => remove second
if len(llm_scores) > NUM_SCORES:
len_pre = len(llm_scores)
llm_message = re.sub(r"(.*)\[Yes\](.*)\[Yes\]", r"\1[Yes]\2", llm_message)
llm_message = re.sub(r"(.*)\[No\](.*)\[No\]", r"\1[Yes]\2", llm_message)
llm_message = re.sub(r"(.*)\[NA\](.*)\[NA\]", r"\1[Yes]\2", llm_message)
llm_scores = find_scores(llm_message)
if len(llm_scores) > len_pre:
wrong_format.append("same-response-twice-in-a-row-(removed-second)")
# Mixtral-8x22B sometimes reports some extra score brackets but correct ones are identified with "Response: " or "Answer: " prefix
if len(llm_scores) > NUM_SCORES:
llm_scores_with_prefix = [x[1] for x in re.findall(r"(Response: |Answer: |Verdict: )\"?\[(Yes|No|NA)\]", llm_message)]
if len(llm_scores_with_prefix) == NUM_SCORES:
llm_scores = llm_scores_with_prefix
wrong_format.append("extra-score-brackets-without-prefix")
# Mixtral-8x22B sometimes reports some extra score brackets but correct ones are identified with "- " prefix
if len(llm_scores) > NUM_SCORES:
llm_scores_with_prefix = [x[1] for x in re.findall(r"(- )\[(Yes|No|NA)\]", llm_message)]
if len(llm_scores_with_prefix) == NUM_SCORES:
llm_scores = llm_scores_with_prefix
wrong_format.append("extra-score-brackets-without-prefix")
# Mixtral-8x22B sometimes reports some extra score brackets but correct ones are identified with ": \"" prefix
if len(llm_scores) > NUM_SCORES:
llm_scores_with_prefix = [x[1] for x in re.findall(r"(: \")\[(Yes|No|NA)\]", llm_message)]
if len(llm_scores_with_prefix) == NUM_SCORES:
llm_scores = llm_scores_with_prefix
wrong_format.append("extra-score-brackets-without-prefix")
ranges = re.findall(r"(P(\d*)-P(\d*)\.)(.*?)\[(Yes|No|NA)\]", llm_message.replace("\n", ""))
if len(ranges):
wrong_format.append("unsolicited-ranges")
final_llm_scores_n = len(llm_scores)
if len(llm_scores) > NUM_SCORES:
llm_scores = llm_scores[0:NUM_SCORES]
code = {"Yes": 1, "No": 0, "NA": "NA"}
llm_scores = [code[x] for x in llm_scores]
if len(llm_scores) != NUM_SCORES:
print(f"{response_file}\nWrong number of scores: {len(llm_scores)}")
break
# Sometimes quotes are interrupted by a gap (...), make sure to exclude that gap from quote
llm_message = split_interrupted_quotes(llm_message)
with open(FULLTEXT_FOLDER + response_file.replace(".json", "")) as f:
fulltext = f.read()
results.append({
"publication_id": id,
#"created": response_json["created"],
"prompt_tokens": response_json["usage"]["prompt_tokens"] if 'response_json' in locals() and "usage" in response_json and 'prompt_tokens' in response_json["usage"] else int((len(prompt)+len(fulltext))/4),
"completion_tokens": response_json["usage"]["completion_tokens"] if 'response_json' in locals() and "usage" in response_json and 'completion_tokens' in response_json["usage"] else int(len(original_llm_message)/4),
#"finish_reason": response_json["choices"][0]["finish_reason"],
"wrong_format": wrong_format,
"original_llm_scores_n": original_llm_scores_n,
"final_llm_scores_n": final_llm_scores_n,
"llm_scores": llm_scores,
"llm_message": llm_message,
"original_llm_message": original_llm_message,
})
# If PRISMA and AMSTAR are combined, split llm_message and compare quotes separately
if NUM_SCORES == 38:
llm_message_split = llm_message.split("P1.")
if len(llm_message_split) == 1:
llm_message_split = llm_message.split("P1:")
if len(llm_message_split) == 1:
llm_message_split = llm_message.split("P1\n")
if len(llm_message_split) == 1:
llm_message_split = llm_message.split("P1 -")
if len(llm_message_split) > 2:
print(f"{response_file}\More than 2 splits for 'P1' - Should be ok because of ''.join(llm_message_split[1:] below but double-check")
quote_accuracy += [{"publication_id": id, "tool": "AMSTAR", **x} for x in compare_quotes(llm_message_split[0], fulltext, prompt)]
quote_accuracy += [{"publication_id": id, "tool": "PRISMA", **x} for x in compare_quotes(''.join(llm_message_split[1:]), fulltext, prompt)]
else:
quote_accuracy += [{"publication_id": id, "tool": "PRISMA" if NUM_SCORES == 27 else "AMSTAR", **x} for x in compare_quotes(llm_message, fulltext, prompt)]
results = pd.DataFrame(results).set_index("publication_id")
results.to_csv(RESULTS_FOLDER + "results.csv", na_rep="NA")
print(results["final_llm_scores_n"].value_counts())
quote_accuracy = pd.DataFrame(quote_accuracy)
quote_accuracy.to_csv(RESULTS_FOLDER + "quote_accuracy.csv", na_rep="NA", index=False)
results
#results[results["final_llm_scores_n"]>38]
# %%