-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
196 lines (164 loc) · 7.41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import numpy as np
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class CTCLabelConverter(object):
""" Convert between text-label and text-index """
def __init__(self, character):
# character (str): set of the possible characters.
dict_character = list(character)
self.dict = {}
for i, char in enumerate(dict_character):
# NOTE: 0 is reserved for 'blank' token required by CTCLoss
self.dict[char] = i + 1
self.character = ['[blank]'] + dict_character # dummy '[blank]' token for CTCLoss (index 0)
def encode(self, text, batch_max_length=25):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
length = [len(s) for s in text]
text = ''.join(text)
text = [self.dict[char] for char in text]
return (torch.IntTensor(text), torch.IntTensor(length))
def decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
index = 0
for l in length:
t = text_index[index:index + l]
char_list = []
for i in range(l):
if t[i] != 0 and (not (i > 0 and t[i - 1] == t[i])): # removing repeated characters and blank.
char_list.append(self.character[t[i]])
text = ''.join(char_list)
texts.append(text)
index += l
return texts
class AttnLabelConverter(object):
""" Convert between text-label and text-index """
def __init__(self, character):
# character (str): set of the possible characters.
# [GO] for the start token of the attention decoder. [s] for end-of-sentence token.
list_token = ['[GO]', '[s]'] # ['[s]','[UNK]','[PAD]','[GO]']
list_character = list(character)
self.character = list_token + list_character
self.dict = {}
for i, char in enumerate(self.character):
# print(i, char)
self.dict[char] = i
def encode(self, text, batch_max_length=25):
""" convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
batch_max_length: max length of text label in the batch. 25 by default
output:
text : the input of attention decoder. [batch_size x (max_length+2)] +1 for [GO] token and +1 for [s] token.
text[:, 0] is [GO] token and text is padded with [GO] token after [s] token.
length : the length of output of attention decoder, which count [s] token also. [3, 7, ....] [batch_size]
"""
length = [len(s) + 1 for s in text] # +1 for [s] at end of sentence.
# batch_max_length = max(length) # this is not allowed for multi-gpu setting
batch_max_length += 1
# additional +1 for [GO] at first step. batch_text is padded with [GO] token after [s] token.
batch_text = torch.LongTensor(len(text), batch_max_length + 1).fill_(0)
for i, t in enumerate(text):
text = list(t)
text.append('[s]')
text = [self.dict[char] for char in text]
batch_text[i][1:1 + len(text)] = torch.LongTensor(text) # batch_text[:, 0] = [GO] token
return (batch_text.to(device), torch.IntTensor(length).to(device))
def decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
for index, l in enumerate(length):
text = ''.join([self.character[i] for i in text_index[index, :]])
texts.append(text)
return texts
class TransformerConverter:
def __init__(
self,
character,
mask_language_model=True,
p_mask_token=0.05,
max_seq_length=256,
):
self.mask_language_model = mask_language_model
self.p_mask_token = p_mask_token
self.pad = '<PAD>'
self.bos = '<BOS>'
self.eos = '<EOS>'
self.mask_token = '<MASK>'
self.unk_token = '<UNK>'
list_character = list(character)
self.character = [self.pad, self.bos, self.eos, self.mask_token, self.unk_token] + list_character
self.dict = {
c: i
for i, c in enumerate(self.character)
}
self.pad_idx = self.dict[self.pad]
self.bos_idx = self.dict[self.bos]
self.eos_idx = self.dict[self.eos]
self.mask_token_idx = self.dict[self.mask_token]
self.unk_idx = self.dict[self.unk_token]
self.start_real_char_idx = self.unk_idx + 1
self.max_seq_length = 256
@property
def n_classes(self):
return len(self.character)
def encode(self, text, batch_max_length=None, train=True):
length = [len(s) + 2 for s in text]
max_length = max(length)
batch_text = torch.zeros(len(text), max_length, dtype=torch.long) + self.pad_idx
for i, s in enumerate(text):
token_ids = [self.bos_idx, *[self.dict.get(c, self.unk_idx) for c in s], self.eos_idx]
batch_text[i, :length[i]] = torch.LongTensor(token_ids)
batch_text = batch_text.to(device)
if self.mask_language_model and train:
# mask = batch_text.new(*batch_text.size()).bernoulli_(1-self.p_mask_token).div_(1-self.p_mask_token)
mask = torch.rand(batch_text.size(), device=batch_text.device) < self.p_mask_token
mask = mask & (batch_text != self.pad_idx) & (batch_text != self.bos_idx) & (batch_text != self.eos_idx)
batch_text[mask] = self.mask_token_idx
tgt_input = batch_text[:, :-1]
tgt_output = batch_text[:, 1:]
tgt_padding_mask = tgt_input == self.pad_idx
# return batch_text, tgt_mask, torch.LongTensor(length, device=device)
return (
{
'tgt_input': tgt_input,
'tgt_padding_mask': tgt_padding_mask,
'tgt_output': tgt_output,
},
torch.LongTensor(length).to(device)
)
def _decode_one(self, token_ids,):
first = 1 if self.bos_idx in token_ids else 0
last = token_ids.index(self.eos_idx) if self.eos_idx in token_ids else None
sent = ''.join([self.character[i] for i in token_ids[first:last]])
return sent
def decode(self, batch_ids):
if torch.is_tensor(batch_ids):
batch_ids = batch_ids.cpu().tolist()
elif type(batch_ids) == np.ndarray:
batch_ids = batch_ids.tolist()
return [self._decode_one(token_ids) for token_ids in batch_ids]
class Averager(object):
"""Compute average for torch.Tensor, used for loss average."""
def __init__(self):
self.reset()
def add(self, v):
count = v.data.numel()
v = v.data.sum()
self.n_count += count
self.sum += v
def reset(self):
self.n_count = 0
self.sum = 0
def val(self):
res = 0
if self.n_count != 0:
res = self.sum / float(self.n_count)
return res