-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_multilabel_classification_model.py
386 lines (334 loc) · 14.4 KB
/
train_multilabel_classification_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import argparse
import json
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.applications.densenet import DenseNet201
from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2
from tensorflow.keras.applications.resnet import ResNet152
from tensorflow.keras import optimizers
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from loss import compute_class_weights, set_binary_crossentropy_weighted_loss
from utils import NumpyEncoder, plot_metrics
parser = argparse.ArgumentParser(description="Training CheXpert multi-label classification model.")
parser.add_argument('--data_dir', type=str, default="dataset/",
help="(Required) Path to the CheXpert dataset folder (default: 'dataset/')"
)
parser.add_argument('--model_architecture', type=str, default="densenet201", choices=["densenet201", "inceptionresnetv2", "resnet152"],
help="The required model architecture for training: ('densenet201','inceptionresnetv2', 'resnet152'), (default: 'densenet201')"
)
parser.add_argument('--train_multi_gpu', default=False, type=bool,
help="If set to True, train model with multiple GPUs. (default: False)"
)
parser.add_argument('--num_gpus', default=1, type=int,
help="Set number of available GPUs for multi-gpu training, '--train_multi_gpu' must be also set to True (default: 1)"
)
parser.add_argument('--training_epochs', default=30, type=int,
help="Required training epochs (default: 30)"
)
parser.add_argument('--resume_train', default=False, type=bool,
help="If set to True, resume model training from model_path (default: False)"
)
parser.add_argument('--optimizer', type=str, default="nadam", choices=["sgd", "adam", "nadam"],
help="Required optimizer for training the model: ('sgd','adam','nadam'), (default: 'nadam')"
)
parser.add_argument('--lr', default=0.001, type=float,
help="Learning rate for the optimizer (default: 0.001)"
)
parser.add_argument('--use_nesterov_sgd', default=False, type=bool,
help="Use Nesterov momentum with SGD optimizer: ('True', 'False') (default: False)"
)
parser.add_argument('--use_amsgrad_adam', default=False, type=bool,
help="Use AMSGrad with adam optimizer: ('True', 'False') (default: False)"
)
parser.add_argument('--batch_size', default=16, type=int,
help="Input batch size, if --train_multi_gpu then the minimum value must be the number of GPUs (default: 16)"
)
parser.add_argument('--image_height', default=512, type=int,
help="Input image height (default: 512)"
)
parser.add_argument('--image_width', default=512, type=int,
help="Input image width (default: 512)"
)
parser.add_argument('--num_workers', default=2, type=int,
help="Number of workers for fit_generator (default: 2)"
)
args = parser.parse_args()
def set_tensorflow_mirrored_strategy_gpu_devices_list(num_gpus):
gpu_devices = [""] * num_gpus
for i in range(num_gpus):
gpu_devices[i] = f"/gpu:{i}" # e.g: devices=["/gpu:0", "/gpu:1"]
return gpu_devices
def set_model_architecture(model_architecture, image_height, image_width):
if model_architecture == "densenet201":
base_model = DenseNet201(
weights=None, # Set to None since input will be grayscale images instead of RGB images
include_top=False,
input_shape=(image_height, image_width, 1)
)
elif model_architecture == "inceptionresnetv2":
base_model = InceptionResNetV2(
weights=None, # Set to None since input will be grayscale images instead of RGB images
include_top=False,
input_shape=(image_height, image_width, 1)
)
elif model_architecture == "resnet152":
base_model = ResNet152(
weights=None, # Set to None since input will be grayscale images instead of RGB images
include_top=False,
input_shape=(image_height, image_width, 1)
)
x = base_model.output
x = GlobalAveragePooling2D()(x)
predictions = Dense(units=14, activation="sigmoid")(x) # For multi-label classification for the five CheXpert competition labels
model = Model(inputs=base_model.input, outputs=predictions)
print("Using {} model architecture.".format(model_architecture))
return model
def set_optimizer(optimizer, learning_rate, use_nesterov_sgd, use_amsgrad_adam):
if optimizer == "sgd":
optimizer = optimizers.SGD(
lr=learning_rate,
momentum=0.9,
nesterov=use_nesterov_sgd
)
elif optimizer == "adam":
optimizer = optimizers.Adam(
lr=learning_rate,
beta_1=0.9,
beta_2=0.999,
epsilon=0.1,
amsgrad=use_amsgrad_adam
)
elif optimizer == "nadam":
optimizer = optimizers.Nadam(
lr=learning_rate,
beta_1=0.9,
beta_2=0.999,
epsilon=0.1
)
return optimizer
def main():
data_dir = args.data_dir
model_architecture = args.model_architecture
train_multi_gpu = args.train_multi_gpu
num_gpus = args.num_gpus
training_epochs = args.training_epochs
resume_train = args.resume_train
optimizer = args.optimizer
learning_rate = args.lr
use_nesterov_sgd = args.use_nesterov_sgd
use_amsgrad_adam = args.use_amsgrad_adam
batch_size = args.batch_size
image_height = args.image_height
image_width = args.image_width
num_workers = args.num_workers
train_df = pd.read_csv(
filepath_or_buffer="labels/train_validation_split_data/train_u-zeroes.csv",
dtype={ # Setting labels to type np.float32 was necessary for conversion to tf.Tensor object
"Path": str,
"Atelectasis": np.float32,
"Cardiomegaly": np.float32,
"Consolidation": np.float32,
"Edema": np.float32,
"Pleural Effusion": np.float32,
"Pleural Other": np.float32,
"Pneumonia": np.float32,
"Pneumothorax": np.float32,
"Enlarged Cardiomediastinum": np.float32,
"Lung Opacity": np.float32,
"Lung Lesion": np.float32,
"Fracture": np.float32,
"Support Devices": np.float32,
"No Finding": np.float32
}
)
val_df = pd.read_csv(
filepath_or_buffer="labels/train_validation_split_data/validation_u-zeroes.csv",
dtype={ # Setting labels to type np.float32 was necessary for conversion to tf.Tensor object
"Path": str,
"Atelectasis": np.float32,
"Cardiomegaly": np.float32,
"Consolidation": np.float32,
"Edema": np.float32,
"Pleural Effusion": np.float32,
"Pleural Other": np.float32,
"Pneumonia": np.float32,
"Pneumothorax": np.float32,
"Enlarged Cardiomediastinum": np.float32,
"Lung Opacity": np.float32,
"Lung Lesion": np.float32,
"Fracture": np.float32,
"Support Devices": np.float32,
"No Finding": np.float32
}
)
list_columns = list(train_df.columns)
y_cols = list_columns[1::] # First column is 'Path' column
training_dataset_mean = np.load("misc/calculated_chexpert_training_dataset_mean_and_std_values/CheXpert_training_set_mean.npy")
training_dataset_std = np.load("misc/calculated_chexpert_training_dataset_mean_and_std_values/CheXpert_training_set_std.npy")
train_datagen = ImageDataGenerator(
featurewise_center=True, # Mean and standard deviation values of the training set will be loaded to the object
featurewise_std_normalization=True,
rotation_range=10,
shear_range=0.1,
zoom_range=0.1,
cval=0.0,
fill_mode='constant',
horizontal_flip=False, # Some labels would be heavily affected by this change if it is True
vertical_flip=False # Not suitable for Chest X-ray images if it is True
)
# Set training dataset mean and std values for feature_wise centering and std normalization
train_datagen.mean = training_dataset_mean
train_datagen.std = training_dataset_std
train_datagenerator = train_datagen.flow_from_dataframe(
dataframe=train_df,
directory=data_dir,
x_col='Path',
y_col=y_cols,
target_size=(512, 512),
color_mode='grayscale',
class_mode='raw',
batch_size=batch_size,
shuffle=True,
validate_filenames=True
)
val_datagen = ImageDataGenerator(
featurewise_center=True, # Mean and standard deviation values of the training set will be loaded to the object
featurewise_std_normalization=True
)
# Set training dataset mean and std values for feature_wise centering and std normalization
val_datagen.mean = training_dataset_mean
val_datagen.std = training_dataset_std
val_datagenerator = val_datagen.flow_from_dataframe(
dataframe=val_df,
directory=data_dir,
x_col='Path',
y_col=y_cols,
target_size=(512, 512),
color_mode='grayscale',
class_mode='raw',
batch_size=batch_size,
shuffle=False,
validate_filenames=True
)
# Set GPU devices list for Tensorflow MirroredStrategy() 'devices' parameter for Multi-GPU training:
gpu_devices = set_tensorflow_mirrored_strategy_gpu_devices_list(num_gpus=num_gpus)
optimizer = set_optimizer(
optimizer=optimizer,
learning_rate=learning_rate,
use_nesterov_sgd=use_nesterov_sgd,
use_amsgrad_adam=use_amsgrad_adam
)
positive_weights, negative_weights = compute_class_weights(labels=train_datagenerator.labels)
print(f"\nPositive Weights: {positive_weights}")
print(f"Negative Weights: {negative_weights}\n")
loss = set_binary_crossentropy_weighted_loss(
positive_weights=positive_weights,
negative_weights=negative_weights,
epsilon=1e-7
)
model_path = f"{model_architecture}.h5"
# Path 1: Resume training from model checkpoint
if resume_train:
# Multi GPU training
if train_multi_gpu:
strategy = tf.distribute.MirroredStrategy(devices=gpu_devices)
with strategy.scope():
# Metrics need to be instantiated within the mirrored strategy scope
auc = tf.keras.metrics.AUC(
name="auc",
multi_label=True
)
model = load_model(
model_path,
custom_objects={
"binary_crossentropy_weighted_loss": set_binary_crossentropy_weighted_loss
}
)
# https://github.com/tensorflow/tensorflow/issues/45903#issuecomment-804973541
model.compile(optimizer=model.optimizer, metrics=[auc, "binary_accuracy", "accuracy"], loss=loss)
# Single-GPU training
else:
auc = tf.keras.metrics.AUC(
name="auc",
multi_label=True
)
model = load_model(
model_path,
custom_objects={
"binary_crossentropy_weighted_loss": set_binary_crossentropy_weighted_loss
}
)
# https://github.com/tensorflow/tensorflow/issues/45903#issuecomment-804973541
model.compile(optimizer=model.optimizer, metrics=[auc, "binary_accuracy", "accuracy"], loss=loss)
# Change Learning Rate
tf.keras.backend.set_value(model.optimizer.lr, learning_rate)
# Path 2: Train from scratch
else:
# Multi GPU training
if train_multi_gpu:
strategy = tf.distribute.MirroredStrategy(devices=gpu_devices)
with strategy.scope():
# Metrics need to be instantiated within the mirrored strategy scope
auc = tf.keras.metrics.AUC(
name="auc",
multi_label=True
)
model = set_model_architecture(
model_architecture=model_architecture,
image_height=image_height,
image_width=image_width
)
model.compile(optimizer=optimizer, metrics=[auc, "binary_accuracy", "accuracy"], loss=loss)
# Single GPU training
else:
auc = tf.keras.metrics.AUC(
name="auc",
multi_label=True
)
model = set_model_architecture(
model_architecture=model_architecture,
image_height=image_height,
image_width=image_width
)
model.compile(optimizer=optimizer, metrics=[auc, "binary_accuracy", "accuracy"], loss=loss)
print(f"\n{model.summary()}\n")
if train_multi_gpu:
print("Training on Multi-GPU mode!\n")
else:
print("Training on Single-GPU mode!\n")
reducelronplateau = ReduceLROnPlateau(
monitor="val_auc",
factor=0.1,
patience=5,
verbose=1,
mode="max",
min_lr=1e-6
)
checkpoint = ModelCheckpoint(
filepath=model_path,
monitor='val_auc',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='max'
)
fit = model.fit(
x=train_datagenerator,
epochs=training_epochs,
validation_data=val_datagenerator,
verbose=1,
callbacks=[reducelronplateau, checkpoint],
workers=num_workers
)
# Modified to fix the 'np.float32 is not JSON serializable issue'
dumped = json.dumps(fit.history, cls=NumpyEncoder)
with open(f'{model_architecture}_model_history.txt', 'w') as f:
json.dump(dumped, f)
# Plot train losses and validation losses
plot_metrics(model_history=fit.history, model_architecture=model_architecture, stop=training_epochs)
if __name__ == '__main__':
main()