diff --git a/sentiment_analysis.ipynb b/sentiment_analysis.ipynb
new file mode 100644
index 0000000..84c90a3
--- /dev/null
+++ b/sentiment_analysis.ipynb
@@ -0,0 +1,880 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Sentiment Analysis\n",
+ "\n",
+ "_Artificial Intelligence Nanodegree Program | Natural Language Processing_\n",
+ "\n",
+ "---\n",
+ "\n",
+ "With the rise of online social media platforms like Twitter, Facebook and Reddit, and the proliferation of customer reviews on sites like Amazon and Yelp, we now have access, more than ever before, to massive text-based data sets! They can be analyzed in order to determine how large portions of the population feel about certain products, events, etc. This sort of analysis is called _sentiment analysis_. In this notebook you will build an end-to-end sentiment classification system from scratch.\n",
+ "\n",
+ "## Instructions\n",
+ "\n",
+ "Some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this notebook. You will not need to modify the included code beyond what is requested. Sections that begin with '**TODO**' in the header indicate that you need to complete or implement some portion within them. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a `# TODO: ...` comment. Please be sure to read the instructions carefully!\n",
+ "\n",
+ "In addition to implementing code, there will be questions for you to answer which relate to the task and your implementation. Each section where you will answer a question is preceded by a '**Question:**' header. Carefully read each question and provide your answer below the '**Answer:**' header by editing the Markdown cell.\n",
+ "\n",
+ "> **Note**: Code and Markdown cells can be executed using the **Shift+Enter** keyboard shortcut. In addition, a cell can be edited by typically clicking it (double-click for Markdown cells) or by pressing **Enter** while it is highlighted."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Step 1: Exploring the data!\n",
+ "\n",
+ "The dataset we are going to use is very popular among researchers in Natural Language Processing, usually referred to as the [IMDb dataset](http://ai.stanford.edu/~amaas/data/sentiment/). It consists of movie reviews from the website [imdb.com](http://www.imdb.com/), each labeled as either '**pos**itive', if the reviewer enjoyed the film, or '**neg**ative' otherwise.\n",
+ "\n",
+ "> Maas, Andrew L., et al. [Learning Word Vectors for Sentiment Analysis](http://ai.stanford.edu/~amaas/data/sentiment/). In _Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies_. Association for Computational Linguistics, 2011.\n",
+ "\n",
+ "We have provided the dataset for you. You can load it in by executing the Python cell below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "IMDb reviews: train = 12500 pos / 12500 neg, test = 12500 pos / 12500 neg\n"
+ ]
+ }
+ ],
+ "source": [
+ "import os\n",
+ "import glob\n",
+ "\n",
+ "def read_imdb_data(data_dir='data/imdb-reviews'):\n",
+ " \"\"\"Read IMDb movie reviews from given directory.\n",
+ " \n",
+ " Directory structure expected:\n",
+ " - data/\n",
+ " - train/\n",
+ " - pos/\n",
+ " - neg/\n",
+ " - test/\n",
+ " - pos/\n",
+ " - neg/\n",
+ " \n",
+ " \"\"\"\n",
+ "\n",
+ " # Data, labels to be returned in nested dicts matching the dir. structure\n",
+ " data = {}\n",
+ " labels = {}\n",
+ "\n",
+ " # Assume 2 sub-directories: train, test\n",
+ " for data_type in ['train', 'test']:\n",
+ " data[data_type] = {}\n",
+ " labels[data_type] = {}\n",
+ "\n",
+ " # Assume 2 sub-directories for sentiment (label): pos, neg\n",
+ " for sentiment in ['pos', 'neg']:\n",
+ " data[data_type][sentiment] = []\n",
+ " labels[data_type][sentiment] = []\n",
+ " \n",
+ " # Fetch list of files for this sentiment\n",
+ " path = os.path.join(data_dir, data_type, sentiment, '*.txt')\n",
+ " files = glob.glob(path)\n",
+ " \n",
+ " # Read reviews data and assign labels\n",
+ " for f in files:\n",
+ " with open(f) as review:\n",
+ " data[data_type][sentiment].append(review.read())\n",
+ " labels[data_type][sentiment].append(sentiment)\n",
+ " \n",
+ " assert len(data[data_type][sentiment]) == len(labels[data_type][sentiment]), \\\n",
+ " \"{}/{} data size does not match labels size\".format(data_type, sentiment)\n",
+ " \n",
+ " # Return data, labels as nested dicts\n",
+ " return data, labels\n",
+ "\n",
+ "\n",
+ "data, labels = read_imdb_data()\n",
+ "print(\"IMDb reviews: train = {} pos / {} neg, test = {} pos / {} neg\".format(\n",
+ " len(data['train']['pos']), len(data['train']['neg']),\n",
+ " len(data['test']['pos']), len(data['test']['neg'])))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now that the data is loaded in, let's take a quick look at one of the positive reviews:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "This movie was beautiful. It was full of memorable imagery, good acting, and touching subject matter. It would be very easy to write it off as being too sentimental, but that is the sentiments this type of a movie is trying to achieve. I was totally involved in the story's unfolding and presentation. There were a few cheesy shots, but such is to be expected in a religious propaganda film. The only complaint I can conjure is there wasn't a ton of details. However, this movie wasn't created to explain every element of Joseph Smith's life, ministry, triumphs, controversies, failures etc.; it was designed for a quick glimpse at a few highlights of one of the most amazing American and historical religious figures of all time.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(data['train']['pos'][2])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And one with a negative sentiment:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "It's a good thing The Score came along for Marlon Brando as a farewell performance because I'd hate to think of him going out on Free Money. Not what his fans ought to remember him by.
Brando in his last years is looking more like Orson Welles and Free Money is the kind of film Welles would have done looking for financing of his own work. Brando is the warden of a local prison which in America, when it's located in a small rural setting is usually the largest employer in the area. That gives one who is in charge a lot of clout.
Unfortunately he has one weakness he indulges, his two twin bimbos otherwise known as daughters. Even when they get simultaneously pregnant by a pair of losers, Charlie Sheen and Thomas Haden Church, their hearts still belong to Daddy.
Not to fear because Brando's willing to give them jobs in the prison where they work under conditions not much better than the convicts have. What to do, but commit a robbery of a train which goes through the locality every so often carrying used money to be burned by the Treasury.
Although Free Money has some moments of humor, for most of the time it's quite beneath the talents of all those involved. Some of them would include Donald Sutherland as an equally corrupt judge and Mira Sorvino as his stepdaughter, but also straight arrow FBI agent.
Of course these people and the rest of the cast got to work with someone who many rate as the greatest American actor of the last century. Were it not for Brando's presence and were it some 40 years earlier, Free Money would be playing the drive-in circuit in red state America where the populace could see how they're being satirized.
Or a feeble attempt is made to satirize them.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(data['train']['neg'][2])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can also make a wordcloud visualization of the reviews."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: wordcloud in /opt/conda/lib/python3.6/site-packages\n",
+ "Requirement already satisfied: matplotlib in /opt/conda/lib/python3.6/site-packages (from wordcloud)\n",
+ "Requirement already satisfied: pillow in /opt/conda/lib/python3.6/site-packages (from wordcloud)\n",
+ "Requirement already satisfied: numpy>=1.6.1 in /opt/conda/lib/python3.6/site-packages (from wordcloud)\n",
+ "Requirement already satisfied: six>=1.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud)\n",
+ "Requirement already satisfied: python-dateutil>=2.0 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud)\n",
+ "Requirement already satisfied: pytz in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud)\n",
+ "Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages/cycler-0.10.0-py3.6.egg (from matplotlib->wordcloud)\n",
+ "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud)\n",
+ "Requirement already satisfied: olefile in /opt/conda/lib/python3.6/site-packages (from pillow->wordcloud)\n",
+ "\u001b[33mYou are using pip version 9.0.1, however version 10.0.1 is available.\n",
+ "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Installing wordcloud\n",
+ "!pip install wordcloud"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAADKCAYAAABDsfw/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd4U1UbwH8Zbbr3LrSFsssUkKUgIBtkCSKi4vZTcW+R4cAJAgqKIAqCgAKCgmwEZO8CZXTTvXfTJk1yvz9C04bMTirm9zw8NOee+56TNrnvOe95h0gQBGzYsGHDxn8T8a2egA0bNmzYuHXYlIANGzZs/IexKQEbNmzY+A9jUwI2bNiw8R/GpgRs2LBh4z+MTQnYsGHDxn8YmxKwYcOGjf8wNiVgw4YNG/9hbErAhg0bNv7DSG/1BG5gC1u2YcOGjZojqquApqIEbNhocuSV/kZq3ntIxJ64OQ4k0ONtJGKPWz2tBuXoP9Gs+fEflEoVb868jzbtAgG4EpXK1/N34uzqwCtvjiQo2NNke1pKPmtXHyYhNgu1RuCdWWMJa+lb73PNLjuCr2O/epf7X8NmDqpHvj50jLm79jNy2WrWnb3As79urbr2z3FGfb+aR9ZsJF9eBsD1/AKmrNrA+B/Wct+KNURn5wKw9dIV3ti6E4CicgV9Fi5DoVI1/hv6D1NUtpfk3FfRCGVUqNPILVlLct6bDTrmqdMJ5OeXWtX30ce/JyOzsN7nsH7NUV55ayRLVjxOy1b+ACiVKr6ev5OlK59gzLg7WPLVLrPtACNGd2XpyicYNbYbv/5yrN7nCXC9aF2DyP2vcVspgYdbvaD7WaVUMcrlYeY/+Z2uLfLgZYbaTdG9/ubFlQy1m8L/erzNwv8t5/GIVxlqN4XpbV9CWV6h67fkpR8ZajeFQxuPG4z5zsh5ejI7BfqzfMo4/rp8jRKFktTCIgCC3FzxdnYir6yMn06e0/VPLSzi9yceYvawgczbcwCAsR3b4+PiBMCMTdtYPGE0MmnjbNqKlQqWnDlB2JL5HExKNNknLj+PJWdOmOzzbyeraKlBW6F8BwpVYoOMN2vOZmbP3czb7/3Giy+vYftf5wFY9fNhHn9qBU8/+yOvvrGOwsIyg3sXfb2byjyQl6+k8fKra3nmuZ9ISyuo8TwWL5tOQKAHTzy8jOir6QAkxGVRoVID0H9gez7+corZdoCOnZsD0DLcj5zs4hrPwxrKVel6r09lPEO5KpMT6Y9RWpFITMFSMkr3olTnoVDnaOdc9DMXc2bXy/iJxfkM2rLc6vamym2lBLKScikrKQcgLjKRCkUF107H6a4nXErS6z/13QmsjFrAt6c/5eVvn+L781/QsV870uIzOb7tjK7fiCcHA7Br1QG9+wuzizj/dxQtO4Xo2iRi7a9ULKr61Sbm5bP40DG+nXQfI9q30ZPhZG+n+7l6QtcH7+hMdkkpqYVF9AgJrsmvoU642sto4eFpsU+4p5fFfv9m7CSBBm0iJEjFPg0y3gdzJhAc5Ml774xh8cJpjBrZFYAxo7rxw/dP8v13j9G+XSB79l7S3SMWifhm6V6kEjEikXZlvujr3Xz0wUSWLZ3O4iW7azyP3JxiXN0cGTCwPZcvpQAQ1tKP0hIFoP2M5ueVmm2/VbjJOlCsvEagy0jyFZEUK67hLutAviISmUT7dwt2Hk22/B+Deysf2l03LEIAdifH8MW5QwBM3vULvTcaLgpuF24rJSAIAklXtB/cKydjcfFwJulqKuWl2g9q4sVkZE4yXX+vAA+atQnSvZbaSbj34bsBSIlO07W37BRCm+4tObPnArlp+br2Q5uOo1apuffh/mbnVVSuwNVBhrO9Pftj4sz2rSTE04NVJ88xOqJt3U9+/iWUV8SSmj+T1PyZKFVJlm9oQDydJxi0eTiPQyJ2adR5nDwVx+tvruP92Zs4cSKOoqKqncD6DcfJzCzk+efuBSAhMYeUlDxeee0XnnpmZa3cLRZ+voMnpy0jMT6bISM6ASCTSZkz736emb6CZ6Yv58SxWLPttwp3+w4UVcTgKetCoSKKcnUOjtIgRHqPOeO/lGYu7qTLi2nn6UdCUR6X87Lo5B0AwJL+Yxth9reO2+5gOPFyCm17tuLqyVhadg7lwqHLxJ5PoGO/diRcSiK8c6jZ+70DtKvb6uYggBFPDGLRcyvY8/NBprw1DoC/NxxFLBEzaMpdZmV2Cgqgra8PE1b+Qr8W5sevzs+nz7HliWlm+3RZsYTIJ58H4NNjh/ju7Cnm3zuCiW078PKev8gsLWHduMkALDx5lM3XLpNWUoyvkzOjWrVhZr97rJ5PQ1Mo30ZO8SoAPJzGYi8NsXBHw+HmOJjm3gtIzXsPqcQHT+f78Xd7wfKN9UhKSh4/rTrMyhVP4uRkz89rjlBRodZdd3aWcfpsIteupdO2bSAIAgH+7ixf9nitx/zw88lG29u0C2TZT09a1R7UrGqH2LFzcz5f9FCt52MO6U0K2V3WgYSi1bR0f4ySinjsJO4AeDh0QaHORibxJbV0Oz6OfQ1kdfT252p+FveFtedcdhpX8rOY1KpTg8y7qXFbKQGpvZTrUdqdwNUTsfQa2Y3Lx6OJPhNPRN+2JEYlc++0qlW7Rq3h4G/HOPrHaS4cukxZSTmKMqVR2YOm9GPZGz+ze5VWCeSk5BF15Brdh3TGK1DrMTKjfx9d/1UPTdS7f/64EQYyQz092PXsdAC6Nw82uKe1rw8tvM2bXDr4VHldnM1Ix8XenvMZ6Uxs24Grudn0DwkDtOufZedOM71zN1p5eROTl8OPked4t+8AxKKmsdcoLj90q6egh5fzJLycJzXaeE7OMgoK5IQ09wagpESBi4sMJyd7lEoVR4/H0rN7C13/UaO6MmBAOz74cAurf3qGsDBfSkrLuXAxmc6dmpOfX4qnp3Ojzb+xaen+GEfTphLq9iDBLmNwlAZTWpGoXfkLGtxkbQGwF3twJO0BBEGNk10zOnobngl08grgan42A4PDWRdznqyyEoKd3Rr7Ld0aBEFoCv/qhS+f/E54stNrQuTBKGGI9AEhNTZdWPz8CuHJTq8Jp3adF4ZIHxCiz8QJgiAI277fIwyRPiC8NfwjQa1S62TsXn1QGCJ9QPjx/fUG8i8duSoMkT4gCIIgzOj7nnCf53ShXK6or+nr+P1ClDDiu1WCWqOx2HfLtctChVotXMjKENp+t1A4kZoshC9dIFzJyRJCv/lSiM/P08531zZBdZO8mLxcYe4/+w1kbo+9JoR+86Vw4HqC2bG3x16z2MdaCuV7hPPXm+n+lZSfrBe5NmxYS7f1iwRBEIQpu34RPj97UNd+/441QqufvxCm7V4vfHrmgCAIgvDsgd+F8X/9LLRd86Uwbc8G4avzh822NyB1fv7eVjuBVt3COLDhCPEXknD1ciEoPIA2PcPZvmIfiVHJSKQSwiK0XgsJF7U254EP9EUsqbIZxl+4blJ+RN+2hLQLJj0hi2un4hj6yABkjvb1/j7GderAuE4drOrb0def+IJ8zmak0c7bl05+/giCwNXcHFzs7Qm7cXh7vbCA8KULDO6f0Na6cRqa4nLDwzobNhqTsw+8CMC6oQ/qtf823NCc9e2AcUZlmGpvytxeSqBrGIoyJad3R9KuZzgAbXuEo1FrOL07ktD2wdjJtN44Ps20W+70+Czd/bHnE9m2bI/ZMYY/PpBfPt6MIAjcO+3uBnon1tPCw5Nd8bGcz0ynq38AjlI7Wnv5cC03hwgfP92hskYQWDp8jMH9wa5NY8tb0sRMQTZs/Fe4rZRAy86hiMQizu69oDu8DWkXjIOzjAsHLzPwwaoD3Hsm9+GXeZv59cs/yE7NQ1mm5PDvJxk89S52rz5ocowhDw/gwdD/4RfiQ+cBt34VLRaJSCzM53J2Ns91vxOArv4BxObn0snPX9cv1N2De8PCsZdIbtVUTVKhzqS84tZ6ltiw8V/ltnIRdXRxIDg8AFWFmrY9WwEglohp1a0Fqgo14V2qPHMCwvz4bNdMOt7VjmN/nCYtLpPXVzzLayuexcXMYZq7jysqpYrBU+9C1EQOVGPzcokryKNbgNbdtat/IImFBXTyrVICI1u1YdXFcwb3NoWkTU3tQNiGjf8SIkFoCo+BJvEssorC7CLmTlrAggNzbvVUdIQtmc/gsJb8MGo8AGpBoPPyr7n41Aw9z58fL5zl1yuXiM/Px04iJtjFjS2TpuIo1ZrI/oy5yozd242O8eXg4dzfLsKqPqYRUKqSKVNGUVZxmfzSjShVKbV70zfh4/oEwZ5zrO6vUmcTlXpHjcbwcBpDqE/dgoYuJIUhoHXzbOn3C64OWpPi1fSBKIzshsQiJ5p7f4mHU5UpT60p5nrOMybPUZzsOxPq8x320ua1mqNGKONq2gAq1OmWOwPeLlPxc3uh1uOZokRVzsHMKxzPieVoTjRylRKNIOAktcfT3pnmTt5MDetLV89QZBI7ywJv4ruYfZzMjSOzvJA8RQl2Ygk9vVvSx6c1QwI74W7nVKt5Xy1K40DmFZ3s4ooyPO2daeXqX2fZRqjzSvRfqwTissahVufTJtC06cYS0ekDCPNdU6MP74Knl9FnTA/6jOle63H/i8RmTqCs4goaTUmDyP83KoFAj/fwc3sWtaaYSymmTYsiJLTw+1mnMGIzx1GqOGOyP4DMrhXtAv+u8fyKyw+QnPum1QpAN0eRjAD3V/Bze466Ppc0gsCq+EP8GH+QUpXCYn8nqYwhAR15O+I+7MWWLdzXS3NYeHUHh7KumuzjLJXxaMv+PNayv170vyVeOfOzWbmVsg/cO7NGcs3w380i2txrIYnZjzbKWAv/txx7mR0x5xKIOnqNV79/pl7lP9f/A+IvJeu1vfbNYwyZahjU8m+lVHHqVk+hyVGm1KaASCv40Gw/ATUpeW/QLvAfRCI7iwoAMLqrsERm4SIyCudTm425IChIL/iUUsUZQn2WIhY51FhGJa+eXcM/Fh6k1ZGrFFwrSrdKARzPieGNs78gVxuPB6qkVKVgafQeIvOvs7iHdc+Z4zkxFhVApeyXz/zMp12n4CSVWezf0PxrlYAxisv/JrPwCwRBhcyuFcGenyIRuxm0h3gbrubS8mcS5PkhxhTrhYOXyUrOwcPPnYkvj2qEd2Kj4bn15zllFVEoKmLJK9mgaxOJ7BEEwweUUpVKfukmnGQ370BFiERSBKHC4B6VJh+p2Lr8Tmn5H5BdbD7pmVjkiEYwTGBXnaKyPSRkTyfcb71V4xrjZgXQxTOU8c174CSRodSoyFeWEleSSVRBCjHFGQBMDLnTotwTObG8eHo1akEDaHcQg/w70NGjOR52Tig0Kn5JPMq1oqqUMUeyoxEQEFn4vFTKrqS6bEeJPSnyPA5lXdXJPpIdzTvnN7Cwx8MWZTc0t5USSM17m1b+25BKfMkpXkFGwYf4u79l0F4dkUhMWsEsgjw/Mil35eWvGnrqtz3uTiNNXitVnER1I8tjJS4OfZBY+QADcLQ3dxZhiFTiQ+fmsag0eajUeag0eSgq4lBp8lBr8ihXXqNEYZg1tj5RVMSTmj8b0NDM6zM8nMYgEbveyKH0LiXl+imY8+WbKVFo2xztOxDo8Q4usj6IRPY3zhT081IVyXfj5fKAxXlkFy83qgBEIhmezhNwc7gHJ1l37CT+CKhQqXMoVZymqGwPBaVbdeatSkrKj9TwN1GF5sYDGrRJGL+8YyoD/Nqb7P9b0gn2Z0QxPKiLWbl5ylJmXvhNpwAAtt/zBm52jnr9Rgd346+083x48XeUGm369nWJx5gaZnpXfrPsoYGdeCdirIHsZ1sP1pN9OPuaRdmNwW2lBBztOyOVaNMoeDiNIzZzOG6Owwzaq5NXsoaSsgNwe9cKueWE+SwzeS0+axrFav2znQD3N3CW9WzQOYlEMuwkgbqMoZU2d9DWEyjJblglABqKyw/h6/Y03i5Tda0Odq0I9/uVyCT9s6pKpdAmYAeO9h31rrULPEBizlMUynfq2rKKv7OoBARUpOV/YNDeJSQJY7slEVLsJAF4OI3Gw2k0Id6LiMm4D7lS3/PsSlpf2gUeQiSq2SMmSZ6r+7mXd7hZBQAwKaQXk0J6WZQ76u/PdQ91e7GUP+55zeAhXcnIoK6MCOrChENfkVSay/wr23GS2jOuWQ+DvvnKUj3ZOwe9ha/MdOxNpeweO2YCmJXdWNxWLqLlFVGo1NrgrwL5Flwc+uMk627QXh1P56mE+HxLhTqz0edrwwaAl/MUE1eMfz1vVgCVuMj0V5RKVSKgMdq3kvySjQZtWmVovYkixGcxYpH+A1WpSiZfvtlqGZUEOlStxk7lxhOZXz/ZZCsf0gD3+Lc3+6AGECFioH/V7vJkjvHsv3vSL+rJtiS3UnZ1TMluLP61SiA59yUq1KkkZD9EVpE2HUKw52ck5kwnJmMYpYoTBHjMRCL2NGi/GQe7CK7nPI5GKG/st2HjP45U7I2DXWuj1xzs2hhtN4WDXVu914KgouImM5s+AllFS25qExPsZdo0agyZNAxP54kG7bkla2skB9Bz9VQJap49+QOLr+0yc0fN6e1j/Pd9M21cA3Q/RxYYV0bn8hPrPB9TshuLf605KNx/q0Gbi8PdtHIwTOVgqr26e2krf+O+7zZsNCQO9u1MXpNJQymvsN5LRirxM2hTa/KxM9IOUFJ+3KBSmofTSGTSllaPWYmXyxRyS9botckV56hQZ5kc3xSe9s7kK7UFapQaFaviD5Eqz2NMszvo49MaSR1dK8Ocrat3XN1clKswXh3tUkHd41xMyW4s/rVKwIaN2wFzMSp20gCT14whlRgepKs1ph8wBfI/DdrMHeCbw9G+I2KRExpBXq1VoKT8KJ7ONUuqtrL3M7wbuYErham6tr0Zl9ibcQkPeyeGB3ZhbPPutHE1rP5mDY8fN30+ZYoKjRq5SmHg0plz0wO8+4736k12Y/GvNQfZsHE7YG6VLBYZRpWKRKYjY0UYZrQ15jpaSXH5AQMJrg4DTPY3hwgJjvaGh7hlygs1lhXi7M3qPv9jVqcJhDrrl/MsUMpZf/0YDx7+hiePW1fHt7rNvi4oNeqbXqsaTHZjYtsJ2PjPMWv8F3zw+xu3ehoA2EtMV08TGQm4MmeqEYuMKAGMP6SKyw+gVOkHKGrdcmufVVYmbWkQyFbbIEGxSMTYZt0Z20wbF5GnKOGvtEj+TD1DbLHWieNcfiLdd7yHl70zy3s/ZdLMc3MQ2axOE3A34RlkDuebVur2Yil2YgkV1R7g8++oXRW1m2U3Jv8aJXDh8DV++3oXl0/EolRUMHL6ACa/OBzvQH3fzrKScjYt2cOhLadJT8yiRYdm9B3VjTFPDsTZreZ/+KgTsVw5FUf8xWSuX02jMLeEguwiHF0ccHJ1wNPPnZYdm/PQG6MN5vJvRKPWsHzWb0SfTSQtIZvSQjlqtRpHZwfuHNaZbv3b02dUV1zc6y33iVW8NmguAS38iI+8joefG2+vnoG7jys/f7iRQxuPI7WT4uLpzBd73gfgmxdXEt41jL/XH6HboE48+PY40uIyWP72Ws7/fYlXBsxmyCP9GfnE4EZ9HzcjFtcsslZk5EFfGxQViQZtJeVHDdxS64pGqJ/i814yF6a16Me0Fv04n3+dH+IOcDQ7GtD66b9zbgNr+z1vVZW89u5BtTYl3YyHnTPZiiLd63v8b31m4ZrS5JTAcK+ndD/PmD+NUY8N4LfFO1k5V5vDv5Kty/axb8Mx5q6bQUQvbcbQ9MRs3p34FekJ2bp+0ecSiT6XyF+rDvHBuhmEdQi2ah4Xj0Szd/0xdq09bPR6cX4pxfmlZCblcvV0PDtWH6L7wAimzxxPqy6NWxv34tFo3p+8mHJ5VZ4VR2cZH/76Eh37WOcJoVZp+Oung6z/6i9y0wsMrpcUytn/63H2/3oc+9ftGPFof6a9OQbXRipfGHX0Gq989xTN2gTx0+xfWfvRJp5bOJ1RT93LtJkTEYlErHxvnd49+9cd4aOtbyKx037Mg8IDmP3bazzb/S2+Oji3UeZtCRE1S3xmbLVfGyrUGfUixxLmzFG1patnKF/3eJSd6Rd477w22jq6OJ3TefHc6R1u8f7Y4sx6UwId3IM5mFVkuWMTpkmfCcSc11b5+mHOJowluispkDNn6jfkZxUCGCiA6mQl5zJ76teUFMqNXq/k4OZT/O/uubwx5guTCsAYgkbg9L5LvDTkY9bNb1xPo5sVAMC8za9YrQBS47J4eeg8lrz5i1EFcDPK8gq2LtvHU73fr9V8a0NAqC/N2mhTZfe9rwdRx7SrwFO7zvPWsI+YM/FLTvylH7DUb2xPZE4ypHZNr4ZCFTX9CtbPV1atya8XOZYQGjBB8PDAznqvLxUkm+ipT03yElniTh/LSqep07SVQOR1g4fbzRTnl/Lzp1ovB1MKoJLMpFz++H6/2T7xUSkkRNXe7Uut0rDq4y1s+W5frWXUhKgTsQa/IxcPJ9r3tO7DeeVUHC8PnadTuDWhILuYvzcaxl00BGp1VdCTIAiIRJASk87qub8xd9PrzNn0Ov3v7613j8yp/kt/1ju3qCaFRrCcnfPfhsLMIW31c4G9GVFcLzUXP2E9gwMi9GTXl9zGpMmZg6oTdyGJcc1eYPG+92jTLUzXnp9VyIPtXte9/uung5zeexE3Lxc+2/oaLSKa6a491OENcjOqVrerP9nK1DdGmxzzsffHU5RbzI7V/yCRinl50aP0GtYZNy8Xo/0FQeDItnN89Oi3eu3fvbuecc82nL35yqk43p24kLKSqgA3D19XPt3yGmHtrTN5qSrUvDLsU702iVTMxvhFOLoY2qrLShX8unAH67/6C0GjXeF99vQKVs7dzLf/zMbFo+HOCWSO9nzx+FLiLyTh7uvKx9vewc3bhU53teP1ez/E2d2Rdndat/OZPncyL/abyX3/G9YkSoTeCoylc/BxfYxgT8MUEo3Joqs7aenqRz/ftnjZmzY1CghsST6tey0WiZjQ3HSakR0D32La0SWklxWgETRMOPQVn3adwqCACJNxB3mKEk7mxfN78imW3fmE0T6+Mjc92RMOfYW/gzuvtBthVvbO9AvsTb9IsarcpOzGokkrgUqqKwAATz93gz5ZKXm8+vV0PQUAcN/Tg/jxg5qFr98/Yzh+zbwZ/shdRseqjkgk4q4xd+DgJDNYkatVGiTS+t9sXT0dz3v3L9JTAF7+7ny69TVC2lhv61z7ub6fuMzRnllrnjOqAEB7zvDoe+MIax/Mp08t15noslPzWDF7Iy8veqQW78Y6xBIxb6x8zqD97dUzjPZ/YfHjJmX1Ht2d3qP/2/UgxCLDRY1KnXcLZqKPBoE5FzYhQkQbtwDaugXR0sWXYCcvVBoN+cpSEkuzOZodTYq8ar4TmvfE38H0d9XD3okF3afxxLHvdWmk3z6/Hnc7Jzp7hhDs6ImL1IGCilLSywpILMkmtUxrMuviGWpSrjHZmeWFerLbugai1KiQqxU1lt0YNHklIBJbv10eNLm3QVvX/qYjMk0RHO7Hg6/XLGX01DdGs3LuJr22mMjrtOveosbjm+PqmQTenbgQeXFVSl+fIE8+2/o6weHWR2ZmpeTx66Idem3PzHuA7gMtZ+McMKEnF49Gs23lAV3b3g3HePS9sRaVZm1pIsWPbhvsJIaBaI11TmANAgLXitK5VmS5uE0fn9a80s5ykFsb10B+6vMsr51dS/KNRHWFFfJ6OSOolD358GJdW6Xs+jyDaAia9JkAYHJlGxhm6BNs7AAwpG1Qvc/JGCMf7W8wfl3OFkwpv/cmfqWnAAC+2PZGjRQAwPYfD6JWVdnZ23VvwchH+1t9/yPvjNV7vyqlij+W17ySlY1bg8xIpLJCdWsTmQF08qiZi+qMtsNY1OMRHKwsLxnu6s+afs/xWLj1QXH3NbOuAl24qz+PhQ+w2uc/1NnHatkNSZPfCYS2M/4Q9w/1IT3R/EEwaE0YMkd7FGXmKwnVFRcPJ1pENNM7YC3Kq30pRUdnww9S9LlESov0FUBgC1+jCtEcKqWKXWv069NOeH5ojWS4ebvQ496OHN8RqWs79td5Hn2vZikCrGV55JcNIve/ioOR+gtKVWqtcv3UJ/cGdGRpz8c4k5dATHEGqWX55CqKKaoow04sxVliT6CjJ61c/enl04phN3kIWYOL1IEX2gylhbMvJ3PjuVKUSr6ylCJlGa52Dvg5uBHq7EOEe3N6+YTT2tX69B0vtBnKoy36cyjrik729ZIcxCIRzlKZTvbj4ffUSG5D0uSVQJs7woy2+zfztlqGu48rWcm5ljvWkbbdW+gpgUrX1drgHVSVByY2Mom3x8+npKDKvTWkbRCfbX21VuaX9V/9RUF2Vc6TTn3b0H9czfOZj316sJ4SSLySyqk9F+k5pFPNBNVPrVUbNUAmDcPLeRJ5pb/ptSfnvU5L39Um7qo5f6aeZHvaaQor5Kzr+7rlG4DWbgH08mlVb3MAWHv8PB9v0+5Un7mnFy/d25dRwd0YFdytXscBcLVzaDDZDUGT//Y5uxn3OJHUwPe7IQ5njVGf/uhOrtrD2cTLqQYKoEVEM7748/Va29+vnIrXe21qt2UJDx9Xg7bs1JofLkqMHFI2VEF6G1V4OI81aCsuO4hSVX+pjccE38nMCMvVzfTmUGG+hKWN+qXJ7wRkjv8CX+8GwNnVkdz0AmZOXqSnAFp1CWHepldMuqxaQ+wF/S95QJiPiZ4W5mgkDUdxvjZNwIFzsUQnZxOTkk1OQSk924fw3Ph+RuVIxIbKTKmue4peG+ZxdeiPvTQUpap6jIiGlLy3aen3S4OOfTznGt/H7aKZkw9vth+Pi9SRFHkuS2P+IqM8H5nYjhFB3bkv2HLtYBt1o8krATvZrZ9iWamCxMspxF1MJi0ui+SYdIrySlGUKVGUK1GWVVCcX4pSUX8h8k6uDrw64jNy0vQ9Nj7d8lqd8vYIgmBwVrFi1kZWzDKsMFUbivK0SmBA11a0CPQmyMedy4kZXIhLM3mPndRwJ1JSfhRvl4frZU42TCHC3/0lknNf1WstLv/HRP/6IV9ZwudXNrO81wvszYjkm+i/eLuD+xqiAAAgAElEQVTDRJo5eTOvy8NcL80m1Mqc/zbqzq1/wlpAIr51Fqv87CI+nv4dUSdidcFRjYFILMLOXmrUu6iijoqmtKisQd9LpSIc/PJSWjfzZVivtozv34nWzUx/qZ3tDc8jCst2olRdx1566/2ob2e8nCcaKAGAzMKv8Hd/pdZys4q+xc/tf0avRRUm0c6tGd72rgwL6Mb044tqPY6NutPklUANSp3WC6lxWcyctNCs55HUXoq7lwvuPq44ushwcJLh4evG1dPxpMbVvVaxoBEYHWD8C/Rgu9cZNKkXby57slay8zJrf1hdE/Yveo6s/GJiUnI4ejGR/325kb0Ljb8nF4c++Lg+QU7xD7o2QVBxJe0upBIffF2fxs/tGaqOsATUmhLKK65Soc5AqUrF1aEfjvbWHUgLqKhQpaHWFKHWFKMWitFoilGq09DcaCuviDW4r1RxhuTcVxGL3bCXBCEWuyARuyIRuyEWuWAvDUIickUsrr2prvER08J3JQnZT1K9HnFG4QIyCrVlW2XSMFwc7sbNcSASsScgoNGUoBZKqVBnUFS2hzLlRb0CNnaSAJNKoJNHGAuv/Umuopi9mZH09NaP9M5XlpjcCag1GnZcjGZPVAxXM7JJKyjC0c4Of3dXWvl507NFM6b26mL2HUtvuF9/+Od+jsUlkVlUgiAI+Lq6MP+BkXQM9rf0S2PP5Vh2XYomMjmd3BI5ErEYfzcXFkwZRRt/ffOqRhDo+eESypQV3Ne1PZ/eP1zv+mMrN3IiPpkH7uzM7Pv0swxMW76Bs9fTuPxR7RWyJZq+EmhE0uKzeGX4JxTlGh5KhndqTu8RXWnfsyU9Bhsv9D3/+R/rRQlUp/eILpSXKjh/qCrgZP9vJwhtF8QDr9S8CpSdveGf/P4XhtG6a/2suIPDtV+giTN/JMjbnXahfrQP9TepACrxc3uGvNINBgfCKnUO6QXzSC/4BLHYGQT1jbw3+gXUpd4LrFYCafkf6Skca6lQpxl40xijbeBeg3q/TRk3xyGE+iwmKedlo/UHFKpEFCWJ5Jb8XGPZ70WuIUdRRGZZASvj9/J4y3txt3PirQ4TePP8T/g7ePBWhwl693x6eSOudk5MbN6H4YFVfvTJeQW8sPYPYjL1Pf1KFEpKsnKJy8pl16VohndsjZezaZOps8ye9ScjWXciUq89Oa+AB777hZfu7cfTA0yfRWQUFvPSL4ZV2eKz85i4ZA3Tenfj9eH9kdxQNmKRiPaBfpy9nkp0pn5uIbVG4GKKNqPrhWTDzK7RGQ2fi8imBG4gaATmP/+jgQJo3TWUZ+dNIaJ3/bqsWcM7PzzNgPE9KSmU89K98/QUzE8fbSGkbRB9RnatkUxXD8N8LKHtgxgwwXTeldqw6aPHatTfThJIqPdiErJNpXsQbB5DDYiH01ikft5cz52Bymxx+prxcZdpRtt7erWmZy/juZ7W9zMs+FOhVvPs6i0k5GjPyAI9XOnfpgXNPN3JLZFzLSObc0lplFeozCoAgJPxKRyKTqBjsD+9w0PwcHQgt1TO3suxJOcVsnDPEToE+XFX6zCDezOLSnhw2XoAvJwdGdgunBBvD5QqNdcystl7OZZVR8+SWVzCggeqsg5EBGmVQHx2HmqNRmfmjs7MRq6swE4iITozh/IKFQ52VY/lEkXDxjeBTQnoOLr9HFEnDE0A8/96C3sH66IR6zO1QZ+RXRkwXvtgdnF34oP1L/LSkI91nkKCIPD5MytYsPNtg3xJ5nDxcDIInqtLUJspiuUKFv12iKOXEgD4ZfbDeLiYL+rj5jgEsci53gqR2KgZLg530TZgD2kFH5JfWrN8W4ay+tbTrLQcjrmuUwB3tQ5j6bSxSCX654UKlYpD0YkWZR24Fo9UIubX/03Va395SD+6zNamfVhx6JRRJfDmbzvILCphaERrPp4wFGeZvvfiqIU/kZCTz86L0XRtHsgjfbU7mYgbJialSk1iTj7hfto4p3NJ2rQYA9u1ZHdUDFGpmXQPsy4BZH3R5OMEGosDm04atDk6y6xWAFDlHlkf9B2pH2gSHO7HzJ/0TSplpQpmT/2mxrKbt9GPVEyOrv8CI5/8vJeWQd6snfUwa2ZNY97qvVbd1ybwLzycRiOiZjEXosY+PLpNkUp8CPFehKfz/UZrHJtDhAQn+24EerxNiHf9HvYm51VlAh7WsbWBAgCQSaUM6WDdjv2FQX0M2uwkEt0K/eyNXUV1jsUlcSpB66zx5eSRBgoA4NuHx2Ev1X52l+w/jlypdZSICKqKwq5uEjqfpPWa63Dj+oUUw++io33NCg/VFNtO4AaRR64ZtNXU1FI9CrchMJYMLys5F5VShdSIrd8UbbqGERtZFStw+WT954xJzMhj3jNV2+GUbMvFakBbpzbU51sq1GkUyvcgV56lTBmFUnUdjaBELLJHLHbFTuKPq8PdONi1w0nWDZnU+kR9wZ5zCPacY/J6vqKMJ/7eyObh9e+i2jkk0eq+Ae6vEuCu9dw5dSaBVi398LypkltRURnvzNnEkgXTEIlkdAlJZvvOC+zYc5Fv5uvXu92+8wLrN53k5+WWnQpCvL9C4zWP4vJ/kCtOUaaMQq48h0ZTDiIQi5yRiF2Qir1xcxyCo30EzrI+SBroUDzQo6r28f4rcUy4o2OtSzE42EmZ1sd4NG8bfx+upGehUmtILyymhU9V5P7mM5d0PxtTQgAh3h4MjWjNtsirFJcr2H7hKpN6dKKFrxeO9naUKSu4lpHDiE7aM6NzNymByGTDhHntAxvWXdamBG5g7DD4zqHW5yU5teci184m1OeUjPJX9jLef2AxZ/ZH6dpGB/yPpz6cxEQr8/889dFk9v92Qpf6OulaGivnbuLx2RPrbZ4vTLiL0W8up0OYdtfx8iTrE3YB2EmC8HF9FHjUqv4LIw+Tp5DT1sOXLQlRuNs7sGLg/QCM+esnVBoN4e7ezOs1DDd7B149so0F/bR1JQqV5QzeupzTk2bwe3wU62LPk1aqXzLwXE4an5z9G3lFBW72Mn4Z8mCN3o81HDkWw6pfjqLWCKhVan5a9gSpafl898MBTp1NJKSZF/b2Ut3Dfc/+KLbtuEDmTeUNRw3vTNfOhonYRg3vzHojO15TiEWOuDsOxd2xZnmlGoIhHVrx7cPjeGX9Nv6+Gk/E+18B8PygPozr1oFgTzcLEqoY1y0CJxOraz83Z67ceA4XlVWlai9TVrD9gnahaGll/mi/O9gWqXXk+OV4JJN6dEIsEjGxe0fWHDvH9gtXeXlIP/ZcjiU1vwhfV2ed6Wl3VAxZxSX4ubrozgMm96x5fqSaYDMHmUFeLV+/JX5dtLMBZ1KFWCLm3ZXPGGRXXTF7I6f2XjJxlz6OzjIG3q/v/bBt5cF6za/Ut1MLVr//EKP7dmDMXRHc2aHh6y57yBz55tIx1g99iJSSQgqV5eSWy1k5cBI7Rj/OHT5BzDujzR9zKC0BuUq7Vd+eeJWhIdpDyvEtI1hyt34SPIVaxfsndrPinolsGzWdh9o0TE6Ytb+e4PUXh/HDkul8t1hbmyE4yJMP3x9PcJAnM98crbe6HzIogtnv3tcgc2mKDGjbgq0zHmZoRGtdQfkl+48xdMEPPL3qd04mWBdl7uJQ8ywEReVVtUJcZeazhLo5VNXjKKymSCpNQmkFWqVdaQqKCNKeF1SalyJveAldS9e6qVvjsloXbErgBsaqYsVdsD6HysWj0fU5HbM4uzkyd90MvdQRgkbgkye+J+ma6cjc6jzwykg9E5K8uIzPn/2hXqOevVyd6N81nLs7t6w3meYIcfEg1MUDiUiEu8yRkgoFZ3NS8XXUmlDGtYjgQJo2b1L/oBbsStL+zX5PuMT9LU27l14ryCGhKI8Hdv/CiG0r+ebi0QaZ/7jR3fjgsz/5ae0RSktvv/KP9UFzLw8WPjiabS89yvR+2sJAggCHYxKZ/sNvvLxum0UZtQlArW56slw32fj1ysPhSv+RStNP1xDtgq7yYX/hRvvVjGyc7O0Iq2aSaghsSuAGHXsbuqsd3HzKqnurZ9JsLAJb+PL+qv/pJa2TF5cxe+o3Vnn7BIT6MGnGML22S8dieGf8ghrNQxAEzh+8wqp5W/Ta41JzmL1yJ88t2Mhz87X/GhqJSKxXzk8QQFztwLj6V3NieEc2J1witbSQ3HI5d/ia9sgQEGjm4s6O0Y/r/jUEQwdHsPSrh3FytOf5V9c2yBi3C2E+nrw5oj+Lp46hV8sq09fuqBgaov6Qh2OVZ1txuXkFXX3X4O5YtStoeeNcALSfzas3Vvpdmgfq/X8pVesKHpuVS/sgP92up6GwKYEb9BpuGGVYUig3KOBSneL8Upa//xtzpy1pyKmZpFO/NsyYr++HnZ6QzUfTv7Pq/oeM1FqOOh7L2s//tGgayk0v4ODvp3ik89u8PX4B/2w5o3f9/RU76NgikKfH9OHp+7T/bgV3+AaTVaZVilsTorgrMAyAvgFhXC/K55fo80wMNx9k1tbDlyJlOSczkwFT67y6k5NbgpurA5Mn9OSeu/WDzZyd7MkvlJu487/LvR1a8ePj97N8+gTdA/ZI7HULd9Uce6mE5l7aRIc3ew3dTHxWVSbdcD8v3c/aoDHtIW9SXgFyZQUSsYjOzbTnZpX/X07LQhC0wWcdgxrWFAS2g2EdIx65G58gT2Y/+DUadVU06oTQF626/4P1M+g5pBNT271OfnaR5RvqiWHT7uLItnOc3H1B13bh8DW2fr+fsU8PMnuv1F7Kuqtf8v4Di/W8hX7+9A9+/vSPOs2rbYgfrZv50LV14/g8v9zlLkBr0wfYMHSqQZ/H21cFxImAQ+OfNSrL19GZ4xOf1712kEg5Vu11Q63LfLyrzHvPPnGP3rXFXxi+HwAvT2c2rjGsvRwcZNyEYI1n0L+Rfq1CeXvkAGZv2cvV9Czual3/OacWTBnFpKXa7KpKlVrnClqdpNwC3t+yBwAnezuDNBCTenTi7PU0tpy7DGgPfSuV16D24QR6uJJeUMz2C1c5lZDCnLH31vv7uBnbTqAaPe/tyIz502pcF8Ddx5U7h3ZGJBJxxyDLNXrrm3dWPGVQE2DZexs4e+CyxXs9/dxZsPNtxj07GLEJtzdrkDnqe0wkZebz5GcbGPnG90yc+SMTZ/5Ya9k2asfna/Yz+b1VbPr7Ak/N28Cri7Qmu+Vbj/HAzFU8NPtn/ve5Ng1GclYBT85bz9wfdvHwnDXEpTZ8uoKa8P3Bk+y9HGtyFZ5TUsrqo+eAKrNKfRMR5K9z7Xxtw3aj0bzPrdmKUqUG4Kn+PXF10D9ErjwXuJqeBUDXm+ZaOfe/r2rPrsK8G/Y8AGw7AQNGPHI3Ye2D+Ob1tcRdTDbbVyQSMWBCT57+aLKurfugCPZtONbQ09TD0cWBuetm8NKQeRTmaGMVNGoN8x5bxqK97+ry+ZjCXmbHs/OmMOyhu1j/1V9Wn4WANnZhyIN9uXusfibQOY8PN3GHjcbC3dmB9x8fyjtLt/HHF0/y0Gxt7p8J93Tmyfv6IBLBko2Hdf0jY9J4YdLddG0dzJwVO5nzZNP5Gx6PT2bhniPIpFK6NA+gtb8Pvq7OKFVqYrNyORSdoFMQPcKsj6CvKXPGDiYmM4d9V+IYNn8lg9pr00ao1BquZWQTn601Bd3dJoynjOQfauHjhYOdlNOJqQB0DdFfvHVuFsDOi9EcvKZVAg18HAA0QSWwM2+5Vf1eXDCNFxcYz0tyMz+emVejObTvGc6Sg7M4f+gqK+duIjs1n5LCUjRqDQ5OMrr0b0dEr1bcfV93/Jrrl7kcNKkXgyb1qtF4Sw/NqlH/SvZlXOTnhIO823EibUID2RBds0Pdm2kR0Yx3VjxNj8EduXQshsTLqWQm51BaVIaqQo2nrxsevm4Eh/vTvE0A7XuG0/Ne48n0mvt51GkuNupOsK87Pu7ONPPzQCwW4easPaQ8ejGRHUev4ORgR2p2Ic/frzWl+Xq66Mx32flNK09TZeZPhUrFyYQUk+6gd7cJa9AHp6uDjDVPTab3x9+SLy9j0xl9t2yRCO7v3omZYwYaPdCViLXJ5M4lpeHl7KQ7Z6ikczPtTqAy0rgxaHJKoCnRtX87Fu9771ZPwySDAzoxOKAT0cWGUYZ1YciDfRnyYP3mfrHR+EhumPfE4qqHUVJGPst+P8qvHz+Kk4M9K/44rrvmJKsy6TVe9QzrWPjgGHZcvMaJ+GRiMnPJKCxGrqxAJpUQ5OFGp2YBjOrclt7hDR+P4ubowPePTuCP85c5ez2N3BI5Uok2lfTnk0boon9N0SFIqwQqXUNvviaViFGpNUbubBhsSqABuf+fLxnbrCfbUs+g1Kh4ptUQhgd1I0WeyxeXt5Isz0EikvDb3a8BcLUolflX/iSzvABXO0fW9n2JAmUpT574VifnsZYDGR5kPlgpRZ7Li6d/QCKSMCW0HxNDejfG27XxL6C5vyfd2gTz7Ge/4eIoI6JlgOWbmgBO9nZM7N6Rid0Nd56JJbk8e2w9v0YeAyPe2iHOnuwZNoOHeuungWm7+QMAxoV05rMe2gDBbx8eZ3B/h98/Qi1o6ObdnPUDtNlx72odqjt8rhw/pvg6448beubtHPI8LVyrLAbvjR7Ie6MH8sH5HbTd/AH+jq78OfhZ7tz2hbZDNUfFtps/YEJoFz7pblgPur6wKYEGJEWei4e9MxvuepWEkiyeOLGUoYFdeff8Wt7tOJF2bsEUV5QRVZhMSxd/Xj+7ivc7TaKXd2tS5LkklebgZueoJ2fQvjl09WpBgINxc4tGEHj3/Fo293+T4ooyHj62mHbuwUS4G6YRaIqoNRquJWUTGZdGfFouqdmFpOUWkVNYiuJGml0HmR3uzg7069iC9qF+dG/bDF+Pf1MhF1BWqDgXk0pkXDrXM/I4F5OKXFGBvLwCsViEvZ2EMH9P/L1cCQ/2oV2IH3e0CcbNycGy8BuM6NMegKVvaNNnLHtbe3b14TOGdSia+3mw8ZOq9N+V91iLWqPh6vUszsWkkpCex6mryZSWKylTVFChVuNgb0eQtxvBPu4083MnokUAXcKDCPByrdE4N5MmL+TBgz+Sp5AjFokYGtSesSGdyVfI2Zt+lf3p0SSV5pNTXoKPg/5npKWrD/HFOexOu8ocdQWOEuPpINSCdlU+PsTQjfzm8T+6Ywye9k5640/7ZxVbBz1tMH4lmWXFPHNsPW3c/BgX2oVQZ0/ylWWcyE7kz+SLbL4eSQ/vUCaG1SyXmbXYlEADMzRA+8Fp4eJHG9dA0svziS3J4I1zq3V9nms9HIW6AmepA71uVFlq5uTNr9ePMjSwi56cNq6BXCpIIiDAuBKolD/m4Ce6tqTSnCavBCpUao5cSuT9FTuQm4lalisqkCsqyCuSk5Be5Y/dItCL4b3a8eSomp3H1JbuT31ltH3JyxPoHWHaPVEQ4LUlf3D88nUUJjxd1Brt7yMqMZOoxEz2n9WmOBeLRXRqGcg3L0/QM93cSlRqDe+t2MHRiwnm/27lSmJTc4i9yevoqTG9Gdm7PSG1PEN668xW8hRyJCIR3/SezKDAqviKiWFd+Sn2OJ9c2M3HF3bx1Z36ubHGh3RhftQ+5Col+9KuMbq58fMtAJlEyohmHep1/Oqcy03m8vj3kVQ7R5gU1o0/ky8C8HPcSZsS+LdSuYqAG3ZWQUAikrC1/1uIq0W3nsszn3yuUo6ABT/1G/L/HPBOrefcmMgVFfz2dyRr9pwhr6j2wVAJ6Xl8u+Uo0UnZPH1fb1oF+1i+qQGITsk2qQT+PhfLoo3/kJxlXUbVm9FoBCJj0xjxxnIeGdadh4Z0x6EG2WPrE0WFio0HLrBq12lyC2ufQn35n8f5YdsJBnQN5/GRd9IhrGbBUSezEwF4oEV3vQdwJdNb9WZT4nl2pV4ms2wo/o5VO4/7Qjrx1eX9aASBP5IvGlUC10u0C43BgW1xs9PfhZ3NTbZq/E8u7DY6fnUCHN30FEAloS5eXC/J42phBqUqJc7Smuc9soQtTqCB2ZGm9V1OKMkipjidQEcvQpy8+TnhkK5PhUZFO/dg5GoFx3O0+WxS5Ln08mltICemOJ0ID9OHX5XyK4kpTqdCYz7C8Vbxx5EoRr+9gsWb/qmTAqjOvrMxTJn7M3N+3E2R3PoEgPVFTIqhf31uYSkvLNzM60v/rLUCqE5JmYKlW44yec5qIuOsyxVVn+w9Hc2Yd1ay4NeDdVIAlWgEgb/PxfLIvF/4YNXuWsmYGGp6ldw/oBVqQeB4tv5CK8DRjd6+2hTkhzPjyFMYfgb/uLESHxdimMlze0qVZ5C58QGj41dnTHPjUett3W7kGwJyyhvGY0tUn9Ww6kCTmER903vXOxwf9onljmYoUJYy/O+P6iynKREZm8Yb322rlweIJUQiOP19/RfpNmUOspNKOPzNC7p88/2e/5pyZcMr4TPLG64QeSX3vbuS1OzCBh9HLBbxyqT+TL33Dot9Kw93reGhlj2Z1XWEXluZuoJ+2+dTqlLS2TOY3wY+obsWmZfK5AM/8HjrPrzVaYiBvL7b55OrsP4zfPP4H5zfwdp4bUzObwOfoLOnYXR99T5bBj9Ne3eDg/w6O8TadgI3+DtrJ0dy9t3qadz2HDgfxzPzNzaKAgCtDX7Wyp1oGmmxU6FS684qYlJyGkUBAByLqv98OdWJjE1rFAUAWrPX/A0HWfZH/QZdVjfNVuIosWN4sNbWfyE/Ve9apT1+fKjhgTBAiapmmV6NjV99HrcK25nADTan/Iyz1IV+PoMtd7ZRKw5GxvHWd9tq7QMtEYtRa2p+7/ZjVwCY89iwBs/ICBCTkk1zPw/e+s5yWuNKRCJtBLpGUztlNfvHXWyc+4guIKw+uZSQwQuLfq/VvSKRtvRnbZTw938eR2YvZfrwnmb7udk5sODOCRblBTq6G20fF9qFTdfP67WpBQ1/pWgLN7VxM+737yixQ6FW1Xn8W41NCTQg9WHC8bB3vi1MQVEJGbz93XarFUDLIG/6RITSrXUwIf6etAz0RiTSeqMUlZaTnF3Ahn3nOXwpgdIywxwuN7P92BVcHWW88eDAur4Vi0TGpXMmOoXrmfkm+0SE+dOrQyhdwoNo7udBiL82R0xJmYLC0jJSswtZuuUolxKsq/+cW1jK15sP897D9ZtwLCW7gBkLf0debvl3bCeV0LFFAN3bNmP4ne1wd3HA3dkBkUhEUWk5MSk5nI1O4dTVZC4lZFBxI8eOOb7ZfJgQP08G3WG6dnCZuoK+fi310ojXhJ4+oQQ7eZAqrzqvOZaVYNHU4+fgSoGyrM7j32psSgBILbO+eIyN2vH60j91ibXMcU+3cB4fcScRLYwHMUklYrzcnPByc6JLeBCKChV7Tkez/M8TFusYr99/nrYhftzXr2GT/G08YLq+hFQi5te5jxDqbzwxmKuTDFcnGc18PejVIZSL8eks++OYVeaeP45EMX1ET4J96mfFWa5U8frSPy0esLs4ypg8sAsPDbkDDxdHo308XBzp2a45Pds155n7+pBbWMrKHadYv++cWdmCAHN+2mVWCVRo1JzPS6G7d+2ihUXA2JDOLL16iEv5aXT0DGJ3mnb3aO7B3t0nhOiirDqPf6v5d6queuZasXVlGW3UnqwCy54N/l6uzH/uPpMKwBgyOymj+3Rg80eP8owVNQs+WbPPwFe9sWgX4scvs6aZVADGqIwLeH3KPXrpH4yhUmvYsP+82T414Yv1fxv1drqZ7Z89wfPj+5lUAMbwdnfmjSn3WOUSWlqmtFgoZmXMcfMdLFBp99+ZegWNILAvXeulNyDAtPIZ1axqMVHX8W8l/3nvoFJVCbMuzUCpUeIsdeHTzstu1VRuS+TlSu57dyX5ZorztG3uy4q3HqiXAKjIuDSenb8JpYXCH3X1pjHlHWSMAV3C+fL5MfVyHvHZL/v59W/zley+f2MS3dvULZPmxPdXkZiRZ7bPG1PuYcrgutdbVqk1TP9kPVeuZ5rs09zPg00fPmpQGjJXUcr9f68gTa49tA50dGN6695IRGKKKxSklOZzIT+VEGcvlvZ5wOw8fk08y/tntzExrCubEs/jbu/IkZGvYic2nVr+5vEfatmTEBdPvfE3XT/P4MC2BuNX9/zZdu+ztDZy9tAY3kH/CnNQmVrOxcKzXC26SHp5CgXKXMrUcmRiB1ykbvg6BBDs2JzhAeOxE5sPpshWZHIy7x9S5ddJLUsiT1m10ilVlTDj7ENm7oZB/iMZH2y+TyVn849zpegCSfJ4iisKkatLCXAIJsy5NR3du9HBrYtewJglkuTxfHH1fQA+7rQENzttlGWZWs7x3ENcLjpPelkKJapivOy98bD3opVLe9q7dSbUKVxvLIWmnJkXX6BcXYYIEe9HzMdXZn2gTmpZEp9e0QakOUmc+bjzEqQiw4f4un3nzCoANycHvpoxrt4iYLuEBzHz4XuZtXKn2X7yciVOtSg4XlNC/T2Z9/TIejuQfnlSf4tK4HjU9TorAUsKYESvdvWiAEBrIvvwieE89OFak1HUyVkF7Dp5jZG92+u1e8uc+e2eJ3j11GZOZCeSXlbEJxcMYw3CXX0tzmNEcATvn93Gluva3++oZhFmFYCx8Ssf2DdjSc6tpMkrAQGBWZdepFxt+CCRq0uRq0vJUqQTVXiOg9m76ebRi8nNH8NObPyh8umVd1BqGraIt4DAsZwDrEtaYXAttSyJ1LIkjuTsI8AhmPHNHqKDm3EXNHMUVuTrlMDsSy9RptYPdMlWZJKtyCSm+Ao70jfzQcfFeNpXBZHJxA7c6XU3h7J3IyBwJGcf44KNV68yxoncg7qfu3v1NaoA5IoK1u49a1bOa1MG4O9Zv3l/RvVpz/6zMRw4H2eyzy/7zjVKiom5jw+r16hemZ1lWRfi65ZV1pKHkq+HCzMfMfSbrwstAr14eGh3Vmw/YbLPxq7ie7oAACAASURBVAMXDJQAgI+DC6vvfoQjWfFsS77IztQrKNQqnKX2NHf2JMIj0CA+wBiudtoCMOob1pFxRnIFGaP6+HPP/0V2eYne+P9rdzf3BBjWMG8qNGkloBE0LI9fYFQBGEOhLie17LpJBdAYqIQK1iQu40y+ZR/njPJUvo39nK/vqHlR8cKKfJrTgl0ZWwwUwM0EO4boKYBK7va9l0PZ2lXTidxDjA6aZPRhfjMaQc3pvKO61328Bxjtt/PEVQpLTB8qtg/1Z3Qfw3ws9cGrkwfwz4UEky6l6/ae49FhPbAzUiKwPunUsv6rXIlF5l0uY1Ky6yTfnPIEmD68R4Okq5gwoDMrd5w0qYQi49JISM+jRaCX0ev9/FrSz69lnTJuXptQu9oelePvHvqC1f1ndR1hUTlZ06euNGklsCfzDy4VVnkPtHRpQ1vXjnjb+yIRSShWFZNRnsL10jidh48lP/932n+KUO0IQq4u5csbJhYniTOvt/vQ7P1OEmeT1wQEVsQvIqranH1kfnR274G/QxCOEidiSq5wseA0BRVV7oNbU9cxNvhBs+PeTGFFPsdzD7ItTVse0N3Ok3CXtrjbeWAnlhFTfJnr8ng0gpoId+Pb9gCHqgjFElUx5/NP0sOrn8WxLxdFUqzS1lEOdgyhuVMLo/3+OBJlVs7TYxouxXWwrzuj+7Zn62HjcygoKePA+TiG9GjTYHNoKEIDPPWS591MYUk5BSVlNTqorc6fR03/3bzdnZnQ33iKg7ri7+lC/84tzSqhg5FxJpWAjdrRZJVAvjJX94Br79aZ51q9VS9yfWT6hy8lqmLdzyKRqEZ2cX05Rcy69CIVmqpMisZW+N08ezG5+XQA9mf9xe8pa9mbuY2TeYeZ23GhVStxgPVJKwFo4xrBjNbv1mrOAB52XhRUaB8oqxKXEuwUSqCDaXuyXFXCivhFutczWhsvurNu3zkuWjBL9O/S0mh7SlYB81f/jYDAwtcnkFcox8vdydJbMWDWo0O5GJ9BfFqu0evvLd9B34gwnB0b5mygoWISJg7ozJfrD5jtc/V6ltlspqb440gUhyLjTV7/5OmR2Fthkqotz47ta1YJfLf1GA/de0eD7+Dqk86vfMXnj4xkeDfDBHNNgSbrItrQdvv65lD2Hj0F0NbVsi/6QL8RhDhpH4RFFQWcyD1k4Q59XKVuPNZiRs0mehN3+ervnA5nm0+dcTr/GGqh6vDOWWrcnn/sUmKt5/TJyr2M7h9BToE2WMfTreYKoJK7OxvfpYA2B/6JKw0XI2JubHMo1ebjKaxZ4ZtL62yO42biEVydZHRtFWTyen0QHmRotqxOhUp9y1x8b1earBLwsvfRrYqji6NIKI2+xTMyz5k8/TOA/r5DLd4jQsTdvlURnsdrqATu8RuOi7RuRTn6+gxCIqpa2Z3KO2ymN5y0Yo4aQeBsTKrZPuY8c4rl5Qy+s8pMUxfHmj4RYWavH7/cMDl3/L1cTQZtLT1j+vAzS17KA79vMCvb1VFmcXxLLrKmOHnVtFLs2irYwEWzvrEUCwEQnWxTAvVJkzUH2Ynt6eLRgzP5x1ALahZHz+Mev2EM9Buh84ppSmQpqkwfYpGY9m6GqWeN0cm9u+7nJHkCSo0Ce7HlLzloTUt1xVXqRjfPO3UHveYOmTPKU7kurzIVuNsZD3pKysynzMJKtH2o6TqsTjJ7iuVVO8Fz11Lo1rZ2Lo8dQs2b9y4nmvZNrwudzAS8fX78MGpBYEYP/TORyMwMnt6xFYXa/APc1cny56N6eo7kvAI+2vY3ggCfTBzGwWsJTOhuuFNNyy0y684bGmB9kFtDkp5XVON7Or/yFT/NmMz6w5EciIqjT5tQOoUGsHLfKfw9XPl46jA6NPdnzcGzfL7loIH5Zue5a7y5+i/eHDeAaQOqspuWKpT8fOAs+y7EkpRTgKeLI51DA3lxVD+aeVctAsQiEWsOnuXXoxdIyytiTM8OvDSqHx7OtTu3qU+a7E4AYGzwg7hI3QCt183ezG3MuvQiP8QvQiNYTkFwq/CTBVqMV6ikujlFI6hJlidadZ+TxBlfWf3Uh+3va52738ncf/Re9/K+22i/6GTL3intQ0w/nF944G6e//Q3UrIKmPruamZ9u8Oq+RnDkr0/LjWnQYp6tzRj1ni37wDmnzjColNVu8dN1y4z+fcNeMgc+GPSNLOyrVktV3d+mLVlLxPuiCC7uBQvZydWHzXutmvp71bb6l/1TWZeseVORvhiy0FEIrizVXP+vhTHttNXuL9vZ1LzCpmzYW+N5eWXlDF1wTqW7jyGg72Uh/p3o3WgD8ejk/By+T975x0eZdH14XtrNptN7wmkU0IndKVLtYA0EbFi72LD8lpfe1cUfO0oiiCgSJXeQXqvKaT3vkl2s+37Y03ZbN9sQvLJfV1cV/LsPPMMk9k588yc8zumW5iLth9m/rq99IoO587R/Vmx7ySPfrPKpf+Hu2mzbwIA/tJA3u61kP3FO9iUt5oCdS46g45jZQd4/Ojt9eXiFV0YG3qDVS+Y1iZU5vq+aZ4qm3iF/QOkQA/rK2lnifXqzKyoe+rjGpZkfMOsqHvMym3KX13/c7yiCzdEWI7AdETnZoiNQ8seCeF8MW+6US7Abk3No1arY//pdIa6uH9vjQFdrevI3Ne3P/f17c/Pp44T+8WHxPj5M6lTV8498Hjzwz8toNPruSohmi+3H+BwejYKmeU3iR12XEPfWryFtxZffrn13GLn3wQA+sRGMG/KSACmvfcTK569DQCFh5TP1++loNzxpC1V6lpGv/IVHQJ9OfGx/ejzmJAAfn6iwQMw2MeLN5dv5c+DZ5g0oGXcpB2lTRuBOgYHjmBQ4HBOlx9lb9E2TlccN3kTSFGeJ0V5ntd6fEqA9PKkFTTF9alL0CLTgH36B1zNquwlVOuqOFyyjymRs5GJrL+qDrYSGwCO6QQF+lp3tX364z/IKarAt5Es8sIXbrJbp6vkl7q2srSFn8K+pPPsHr2RicXM27aRuQOvcnsb6nhq/DDu+m45mSVlPLNsHfNnT7JYrtCBv1tbwNUcDT6NzlIaxznUeTs580Z4IbsQnV7PgATHtikTI00jln3lxvFxObLfNaVdGAEwTo49fJPo4ZtEpaacz5PfJqcm06TMB+de4vHOLzVrJe4OVDrX/7BysfXJsSWRCqUMDhzB1oJ1qPUqDpbsZlijbaLGAXseQhlJ/tZ9/B1JGGNrkqyoUrP4v7c5tO3hDgpbIMGNbxNd/4VHDpiVEQoEKCRSpnbpxvxD+xE3OnR9MGmg29rSu2M4P983k4v5xSSEBCKz4uLpiPFuCzQnH4W7qPxHWtuRQ3qAQO/L8712hHZjBBrjLfHl+cR3SFGeZ2PeKs5UGLU+KrUVfJ82n3mJb122FTUYYxxcxVt8+RJPDA0ew7aC9f/ISGw1MQJHyxo8Wvr6D7J5eF2jtr9S85ZbNwITrkrkxie/ITLUD9E/huDzedMd+S+4RI3KNXdKW0gkpn7s7+7bZaWkZdxpBAA8xGJ6RNo+JK+sal9u2a1JVZN8Cl4exrOmogrHFhCtkMvIZdqlEagjXtGFBxOe5XDpXn689CV6g47smgwuVJ5xyE/fnQgFQvT/pI8rVOc57OWj1DbsbwoFIjrInQ/wcRfBHqEk+vTiTMVxsmsyyKy+REd5DAAHihtcR4cEjrRZjzURsMZIxNZXZcs2HeWtR64n0K91Vk8qF90pbSEVm3619t1xn9uf4SpfbN3Pw6PN3+Raoh/aG3Ur+6bbNMl5pgu7TuGBCAUCjqfnotcbWu2ttSVo10agjn7+V6HWqesPNpOVZx02Ap6ihlN8la4GvUGHUOB8NOK0DrfzW+YPgNEzY2Hyezze+SWb9xgwsCD5vfrfp0bOxkPo/vSAzvBAwjM8dsTonfJlyvu80fNzdhVuIllpTLIxKfJm4hS2pRbsZYwSCGy/ml8zsDP7Tl4yuXbvFPu5AlzFVZ96WzSdE8IVzYvncIXrPvnB4vXc8kqLRsCeW++/gUkDuvPb3pO8sXwrG45eICk+kiW7jtG1yZ6+j1zGplfu4fb5y+jz1Cf0jgmnd0wEhRVK9p5L5/tHbiIh3HbgW1uhzRoBjV7jlBBcRnVa/c/+Esc7XyQQoRB7o9RWojPoSFGep5O386f1QwJHsD53Zf3KPll5zu49W/PXkflPu+UiL4YEjXT6ue6m8TZahaaM9KoUTpYbXQqFAiGDAiy7hTbGw464mMFg3NcViywbgpac8C3RkjII1tDq9RzJyyGrssJihPDN3Zqvz+Mn9+TtaePNrj+3wrLMtkQssmnApW1EqqEl2yEQwOf3TuaTNbvZfyGDE1tzeey6q7muXyKjXjbNNRLsq+DXJ2/hh62H2HoyhaW7jxPip2B0z3iCfNruGUBT2qwRWJu7nPSqFAYHDmdQ4HCr5epkm/cVbwOMk1g3X+ekmeMVXTleZtQBX5m1mEc7v2hTKM4SEqGUmVF38W0jXZ0t+WsZFTLB7M1CZ9CyKW8163JX1F+b2uFWh4PEWhqJUFIvgXGm4jjJlUaDlujT26FAPQ8HvqS1Wp1VI1BZrWb+rzvZe9xoIAf1iOale80nM3dh7aC0pUgrK2XO2t9JK7Oeg9gdRmBKUneiAs3/XiHelqU+ZBKxzVzCexY86ra8CK1NUzfOxu6ad47qx52jGoI2/bw8eXWmeeyMJVdQX7mMx68fyuPXD3X42QAT+nZxWEvov7M+ZffvRseC9zf+h17DzeW0m0ObNQIG9CQrz5KsPMv2gg10kMcQJotEIfZBJpJRriklX5XDmYoTFKkboj6vDhqNn8Q5lcGrgkbVG4GsmnTePPMsgwKHEyHrCEC1TkmFppwyTQlJ/oOt6v/38RvIqJCJbCswBjf9kf0Luwo30cuvP2GySDxFclKqznOi7JDJ4fEgO4autUnyH1KvY7SnaCtag9EgWJOMborCgYjWyiqV1UQy736/mR4J4Tw4YygYDPy1z/5bVXOQy1pXevzNPTsoqKri5aEj6RUShlTUMl/D6f17WLz+yazrLV63Jw9do9K0mNjeFS4fbdYINCarJp2sGvsBSIk+vZjSwXa0pSWaTuoVmjI25f1psWyMl/Wco9Cwov8r7w8AimsL642CNW6JuteJ1rY8w4PH1huBCk1D8vYevknWbjEhxE/BGWzLMZQpawgNsLxPfim3hDcevq7+95vHO/ZcVwlxc1IbexzJy+G+vv2Z07uf/cKtSICPnBwbgViVNeorRuD/IW1WNiLWqxPeEsfdJT1Fch6Ifxqpg3INTbGXh8AZro+Ywf3xT9stF+QRyl2xjzqVYrI1iJLHEe0Vb3Zd5OCBebCf/Um1sMy6a51IKDSJNSiyUdYdhPgpUBbNsPivJVDptES04kHxb4dOmvz+57GzFsuFWTHKdbgq13CFtk2bfRPo4zeQPn7u9ZW2xc1Rc7g5ao7b6uvh29eljGG2iJLHub1Oa4wKmcgPaZ+bPNvhe/vG89t223lw95xKsyrVsOj12ZRWVLPrSAoCoYCeLShfLBYJGZgYhUT8G8qiG1EE/dFiz6pj9Yxbmb3qN84WFzKrWy86+PjgKXb/llSxspryGhVLD5ygX7QxgVBJVQ1fbv+bSX3M95WHdI9h8+GLVuvbeSKV3i0sJX2F1qfNGoHW4I2nf2X35jPGn7+4jf5Xm+cBbVzGVrn/bzQVi7MlE9GULlH2dY3sqXf6+8gZlmT+NuIsFVW2o7fjIgLrE5QY9OXodRkIRUbdH70uC6GoeQnbLfH0lg1U1qr57vgRvjtuWczt0sNPNfs5Z3MLWfL3MdKKSnlq6ToAFDIpz0ywfP5kS9kV4HxGQbPbdIW2x7/aCMx99UbueHgMe7accajMD587rzTYHqnQlHGusmELQSKU0D/AcW0bP4UnEYE+NveXbSlW/rzuENPG9Kk/qKxW1drMP2CLU2l5Nj/v2shgyXyeo7JwMkJROCBAr8vGN+yYS8+1RWJQMIlBwfYLNpOhnaIZ2imax35ZzWe33GC3fEKHIKQSsdW4iWPJOWi0ujaV1ev3+RvYu/oQ6aezqCyrQm9FUuL70x8REW8eMW0wGNi76hA7V/7N2b+TqSipJDgykL6jezBxzihie3S024bGdexbfRihWOh0HTVKFc9OeJOc5Dw0tVqCOwQyYHxvHnj/NiQtkM+5Mf9qI+ClkOGlkBEZbT2uwJEy/984WLK7PvoZoK/fIJOgOkcY0iOGFTtOWP281oY/+qodJ5l9bf/63101AGBf0XRQYoPap0Q2Hp/QYei1yYABodi2E4CrvDXSMelud/H0ePuxHWA8i+mbEGE121qNWsPRi9kMTLSukNqapJ3K5MtnfnKorMTDfKorzCrmv7M+5fxBU/XUjHPZZJzLZvX/NnHjw+O5/z3rziaO1LG2YhFCK+7QAOlnsvjP5PcoyGzwGMy6kEvWhVy6D+mCd0DLOi78q43AFSyzo3Cjye+OZElrylV2jIAtxG5cae4+YT1frkAAg7pFN7kmRyRxLCFQe8FSrIA1hveJt5lyc93+c23CCFRX1PDSje8DMP6OEYy/cyQBob7kpRfx3MS36su9/OsT9B/XGw+5+ULiieGvUJRjjNXwDfJhyPVJBHcIJPVkOgc2HEej1rDys/VWjUBRdolZHdMen4hGrTWp4+07vuDFxZbTwJYVVjBv4tuU5pfhHaBg2JSBhMeFUl1Zw+k953nnjs/plOT4eZwrtDkjMPf2r5F5SlH4yEgakoBOq2P8jUn1r0QGg4HXnviFqLgQouKCSU8pYNWS/XTt2ZH3vrmrvp7HZv+P0Ag/Bg3vwolDaWxcdZTrbxrIIy9Y9pFuDq8/uYTn35lh8tqWm1XKtnXHueW+kW5/XktyuHRffQyDAAFPdnnVoqeQPUb2iefGYT34Y9cpq2U2/H2OCYO6ml3/9OmpPPbeCo6eN6ao7JkQzoLnnffUefm7DWQUlFn9/LnZ1+Dv3SCXXVk4Hql8NiJJw6GpWDrA6ec2h8yKcob99I1bzgTquPXrpSy+tyH3w81fLuHXB2ZZLHvz6D5sP5rMwXOZFj9fvfc0oQEKHpzcctLXjvDipPcozCrmpwufEhLVIB8fHhfKityvmBZu1Gr6+oUlXH2j+d/w6NZTFOWU0qFzOP87/C5iifnCIycln/uS5jEt7F4WJ8/Hs5Hy7dGtp3ju2rcB7NZxV/cnObL5hFkd5UUVzI57BK1Gh1AkZHnO/8zuX/zGSn56Y4XZdXfS5ozA2ROZzJwzjLses/zKvHfrWfbvOM+rn86uvxYU4sPC99aZlPvs5/vrfx5zQx8KcsvZt+1sixiB66YPYO/Ws4yY0BDluXXtccZNbhtJbqyxp2gLniIv9AY9JbWFnCo/ZpLLeXjwOLtxEbaYMqynTSPw9Zq/GTewi1kUarC/gs+enYZOp8cAViOLbZFRUMb6v60HmXlIxEwY2DRiU4SH1+0Wy7cWylrrEbvOUucdpNJoSS0sAYzeQRUq22qhM0b1tmoEAH7edITJQ3sQEejjtrY6S06K8aynsQGoQ+HvhV+wD2WFFeSnWz57+mvRDgCmP3GdxckbICI+lKFTBrDt171sX7aPiXNGmd3vSB0AyrJqszr2rz2KVmPcFk0abTmwb8KcUSx+cyUGQ8ulV2pzRgBg6m3WVxm7Np9G1iRgpe8Q+yvV2E6hHDuQil6vR+jmZNlJQ+J5/oFFpkZg3XFm3z/Src9xN3uKttVrFzUlTtGZyZGWV4uO0iM2jKTOkRy5YDnp/KW8EpZtPcbN11g2liIXJv86Ply6Hb3e+hfnhqu7o2iiBS+SdEVbe7BFVv9bLqWi0+sZF5fA7+ct++kDXCq3LiXhLM56B9Uxso/t71ONWsNrP2xk4dxpl009U2tH9E/6TxS4wWDAoDcgaNLOk7uMf4P+42xv/Q0c34dtv+7l+I4zJhN43f2O1FFH0zouHG7Yquw5zLIURFCEP8EdAynIKHLoGa7Q5oyAp5cHvv7WdXtyMkpQ1dQyoc/LNuu5cCabtcsOsm/7OVQ1GjT/ZCNqCYMqEAg4fiCNvOxSwiL9OX8qi+x013MKXG56+CZxe8yDTgn4WePByVdz7/vLrH7++e97GNI9xq1JzP/cc5rdJywbtzrmTDSf6PXaSyiLpiIUhYHAOAZ9Qra7pU3ztv0FwLi4BOZuXmentHtw1juoDkeSrxw6l8mHS7fzzKxRdsu2BCFRQSjLMigtKMc/xDSoVKPWUJhtfPMJiggwMwCqKjVFOaXIvDwI7mDb4aNjF2NcRPrZLJPrdecAjtRRR9M6Gr+lRCZYzxceHhvy7zIC9tzPDAYDvv5eNrd1Du6+yKuP/0x813DeXHA7Ch9Pln63kw0rD7u7ufWIREL++uMIdzx8DVvXnUDhYz01Y1uhk3cixeoC1HoVIoEIH4kfsV6duT3mQbc9I6lzJEN7xVqdlGvUGp6Y/wc/PD8LXwdSMtrjeEoObzuQB9eSZIXc76NmP98aP1w/1eT3/464hk7+5pPHhZJiXt7p3jy+jnoHNaZ7TCin7cRy/Lr1GCKRkCdvcjyGxFUuZhXRqUPD1s+ga5NIPZHBnws3cscrpudFa77aguGft8CBE/qY1aX8JwLdy8e+x5vinwVpZYnlqHVH6qijaR1V5Q3Z+rx8rc8Xnm74XtiizRkBe9x01zDefGYpw8Zazxfw2w+78fGX158LVJRXs29by4qQvf75rbzwwCK8FB6s+mU/ny9x30TaUkyJnM2UyNk2y2h0Oga+uYAPZlzLNYmuBW99+uiN9Lv3Y6ufZxSUMXruQgK85Wz66H6r5Wyh1xtYtOEgn/++x27Zjx6xnGMXBNSUvwQY8Ar8CYPefauvHsENPuozu/VkapdueEnMPVaifHzdbgSaegd9vHE3c8dZV70E+PHFW1i86TAfL9tps9zPm47w557T3Hv9YKaN6GVXhM4R/j6bwYGzGWw7kkx6vnHFPXFQV964Z2J9mTtfnUHS6B48M+4NfnnbPMrbN8iHl359nJ5DzR0PfIOMCwClA3IkylJjGe8Ay7sTjtRRR9M65I0WijWV1oMaa1sg811j2p0RGDqmG8PGdufDl1bSIykGvcFATkYxe7ed5dtVjwPQb0g8Jw6lsfDddUQnhLDixz34BykoL234g2lqtZQUKalWqslKL8LDQ0JgsA9yhQf+gQqk//gV5+eU1ZcByEgtpGNssEkZgL6D4gjvGMCy73cT1zmMhMTwVuyVluNIRo5bMk5NHNTV5kEtQEllNQ9/spK7rx1EUudIh+qt1erYevgiX63ZT3qe/f302WOTGNHbsjGrLp+Hh/xWVMr5AAiELRMb8u4o6y63IV4KFk9quVSaAKdzHIv8nT2mH6fT8tl48LzNcpXVaj5atoOv1+zn2sGJjOqbwICu9gOkwGi8s4vKSc8r5VxmAQfOZnD4fJb9G4FewxMRCAQYDAY8FTJU1Wq8fDyZ+uhErn9gLL6BlrWQJB4SwmNDyE0rID+9kNBo64F7Gf94qEV1NR2Pdfera2rt1lFH0zpCoxvebHJSrb91Ff2ztdVStDsjIBAIeOHdm3j45oXs2HgKsVhESLgvQ0Y2WPxpd1xNZYWKbetPcGjvRabddhXR8SE8dde39WX2bj3L28/9ZvEZT70+hbGTjIeVd1xrukXw1Ycb+OrDDSZl6to1cWo/vvt0E7PbmVuoLXZftK/e6ggv3zGW9PxSu3IR+0+ns/90Oh2C/RjaM4a+nSKJCQ8gLsKYzk+n11NZrSa7sJxl246z80SqXWmIOgZ07cgT023kptBXIPG8vt4IcBnyVIuFQoZ2dE+K0Vu++pVf7ruZUe99bXK9pKrGyh2mCATw2pzxFJYpOXrR8uF+Yyqr1SzdeoylW4/RPSaU2PBAQgO88fWS4SERUa3WGP+paqlWaSitrGbPqUt2M9FZY//aI4gkIp5f9DBDpzinM9ZnZHdy0wo4tPEE191rXTzy4F9GDaxeTQ5u6+4H7NZRR9M6OiU1aGed2HWOGU+ab3Ery6rJuphrt+7m0OaMwLIdz9ktIxAKWLDsIaufi8Ui7pk7jnvmmq64Nhx7vf7nERN6mnjzWKPxPfbQ6fSIJSJGXWfdW+DRJas5fCmbspoas0PqXfPuI0hhfGVMLSxhy9kU7h0+gGWHTrLk7+NcKi6le0Qor9xwDZ1CG1apSnUt3+46xMYzF8kqLcdDLOazWTcwOM50NVZcVc0fR86w7XwqFwuKqVLXMiAmklsG9WFstwZX0J0XLrF4/1HO5RVSWGl8e3rkF1Np7VOvPe7QAWIdUomY+Y9P4f4PlpOcbX+bJauwjF+3HuPXrQ2yDWKREK0VWQB7dI8N44OHbrDpzSIQyDHoG6QutLV/I5YOcul5bYEFt94IQMcAXz66uUGa+4klax2uQyoW8cmjk3n8s1UcS7ZvCOo4fSnf7plCc/li7iJG3TTEaQMAcN2917D++22s+HQd424fjsRCbouclHx2/34QT4WMETOGWLwfsFsHYLGOwdclIRKL0Gl1HNlsObBy0+KdVqUw3EXb0jAGFpwfVf8vo+rA5W6Ow9RU1/Lnr39zzXW98fG1fFh0Oief3RcvcX3vrjwzfjjjuhuF6J4YczX/u+1G/DxND4cKlVW8vX4Hb67dhp/ck9Fd4zmWmUOQt2n9N335C1/u+ButTs/ILnF0CQtizg/LWXrQdGD98vdxPti4iwv5RXQKCWRctwT2p2by2JLVrDrWoJ8kEQnpEhbM5D7dSAgxGpux3RK4Z9iA+n8CFzJM+Sk8+fKp6SYHfM7QHAOwYO5UM5fQpsh8XkBZfDN6bTqVBWOoLrUc5ekOtHo9B3KyWHn+DL+eOWn2zx34yY0HijP69yRI4VX/L8LPORlrhacHC56car9gK2IwGCjOKeXM/oucPZCMutq5+Iq6VXh2ch5v5jDmkwAAIABJREFU3fY51RWmb0e5aQW8PPUDNGoNM5++AYWf3Oz+ETMGO1QHYLEO/xBfhk83LjK0Gh3lReZaWz++vtyp/5crCFoyCMEJTBqRUrmDv3Je5foO7xLl1Xpy0q5QXFDBwzcvJCzSn/ufmUhiL+t7oYPfWsjuefebBD9tP5/K5rMpvHGjaXBcamEJ1322iEVzZjAw1rqSZUpBMQ//8idrH7sTUaNV7uurt7LkwHEeHDmIx66xHneh0+vp/Zpx++PUa4+bff7s8vWsPn6Oz2+Z5PLBsCUMBhjy0GcubwU4godEzCNTr+aWMe5PSmProBtg34JHreYuvmftH+zLzuSpQVdZzSzWK8Rc7KyOk6m53Pn2rzaf/+pd47jhKuvOE65y5EI2ry/aSKaNSOyWoOnBMBj1de7uZT9vx9hbh/H0Nw+YXVeWVvHOnV/Ub/k0RSAQMOGukTyx4B6rdTtSx5ryHxDbODBPOZ7OSze+T3Gu+ZnWG6uerX8GWEwv2ew9yza3HdTeCAzx4det8xwqq9PrzVbQEpEIlcby6b/CQ2rTAADsS81kYGxHEwMA0DnMuNq2dwgoEgoJ9JJTUKlEp9c7tcXTHAQC+Pml2fx30SZOprp/z3Nw92hemH0NkcGOJyZqLS53ZrEvtu7n4dGDXbo3qXMkv712Oz9vPsK3aw/YzEnsLiKDfHl0WoObq0at4Yu5i9jw/XZie0YR070DfkEN0ctV5dVkXsjl3IFkDAYDmxbvsmgEFP5evLHqWQ5tOsHmn3dxeu8FKkuVBEcG0mdkN8bfMZKEvjE229a0jj1/HEQkEZnUYcsAAMT3juab4+/zzPg3yEnJR6fVEdwhkEET+zJgfG+Sj11yqr+cpV0aAZWugqWX5lCjK8dbEkY33+voE3ATAoQotYX8lDKT3gEzuCrY1E1zZcYjVGmLuS1uCQB6g5bDxYs5X7ERvUFLvPdIBgXdjbiFEr73iAzl4KUsk736vSnp9IiwvOqL9Lcflp9XXslvh06aZY+qo6LG9NB018VL/HXqAufyiihSVlFSVYNG13KrcVvERwTyw/M3s+N4Cl/9uZ9zbtCrH5gYxT3XD6JfZ/fnAXAXrZ1ZrCnHMnKadb9ELOLOCQOYPqIXv+88xSfLbbuRuoLC04NhvWKZPLQH/bt0pPHa6bNHvmPjTzsRCAR8efBtq3Xs/v0A/531qdXPVbpyDhT9QHr8fvxfKGa00IvBwfeS6HutSbmc6uMcLVlCnuoMGn0NMpEP06K+wFvSEOCVNKYbhr5H8HshG7nIn3jvfgwKmlU/l+zI/4gidQqjw+axp+BzClQXCPPsztXBD+Ir7YDcx5Mv9r1pMicptcfZU1DOoF5385eq5ZJJtTsjoNHX8HvGYyT6XoePJIw81Rn2FX5FsTqVMeEvoBAHEynvy8WKLQwJfgDBP29LFZpc8mpO0z/wtn9qMrAh5xWyqg/T028qYOBE6UqK1BeZ1PGj+vvcySOjh/DIL39y2+C+hPp6czIrj+WHT7L/BcuH3GKhfTVNvcFAYngIXcIs77NHBTT4iM9dupYNpy7g4yljeKcYrkmMJ9zXm7fWbafSjp5MSzKidzwjesdzMjWXJ+avokzpmPdKYzqG+DFuQBceuvHyCps5Qv/wSPZmZzAj0bJejLu47pMfLF7PLXdPmkiFpwe3je9HYnQImw9fZOfxFPJLlS7XJ5WI6R0fziNTh9ItOtTiIX5BZjGbFhsTHl01ub/Z540ZOmUgch9Ps736OjZkv0xpbQZ9AmaiEAdTpS2mSmvutLAqcy4+knD6+N+EQhJCpSYPL3Hj71vDXDIq7BlK1GkW55ISdRp/Zj5FpLwvvfyncrRkKWuyn2dWzPcIBWKazkkBHjFsz/uwReckaIdG4FjJUkpr0xkYZFQM7eo7ER9JOPsLv2ZM+AsAdPEdz5bct8mpPkak3OjGebHCGIDT2cfoMZRauZtLyr2Mj3iNeG+j26CXOJjdBfO5pNxLrOJqt7e9X3QkZdUqFu74G4PBQLDCixn9eqLwcF0vP8xHQe8OYbwyyb6L2oZTF4gK8GPJfTcT4NVwCP3m2m0uP9+d9IwLZ/NHD5CcXcThC1kkZxWRUVBKblEFheVV6PR6ZFIJnh4S/BWeDO4eTWJ0KH07RRLqhmTxKfmTiQ9d5VDZw1/Pdfk5Lw8dxexVv/H67m0upZfsGRfu0PN/PXWKt6eNN7v+3IoNTrXXHv27dqR/1448N3s0ucUVnErLY8vhi+QWG/9uNWoNqlotYqEAT5kUuYcEuUyKwlPK1T1iiQ7zJybMnw7BfnbFAi+dzqwXU+vU13J60sZIpBLAshHIqTlJ/8Bb6Rtws9X7NfpqfKUdmBH9FRKh5chdR+cSjb6GRN9rGRryiLFtQjl7Cr4gX3WGcM9eFutR65QtOidBOzQCqcpd+EtN/ah7+E1mf2GDL3ScYhg7hR9zoWJTvRG4ULGZUFkiflLjNkGKcgcSoYw474bIyY5exj3a7OqjLdLhxVXVjO4az0czr8VD7J6uHxIfzS8HjqPV6R1S2xzTLd7EAGSUlKFUW9/XrWunWtv8gDFHEAigU4cglz2ImoOjBsAVYr74sP5nkUCAUChs8fSSU5K6W8wlEOLdcklKwgN9CA/0YWz/zi1Sv07b4CGmrrF9HnF63wWLHjd1+Es7cqZ8HYEeCcR5D0VgwVkyq/oIffxvsmoAwLm5pLtfg4ZTiMwY21ShySPcs9dlmZOgHRqBCk0uEZ6mfvhSoRceooY9VonQkwkR/2V11jOMCnuWvYULKddkc2d8gy53WW0mYoGM1ErTXLrjI17FW2J5jz6r+jzfpD5rdn1qh7n08htpt+1SkYit51Lo89r8+mtyqYS5Y4cye1AfXPC6pFNoIN4yD3q++imBCjmJYcEoZB7sSU6nUqVm81N3E+lnPFsI9JLz3e7DnMjKo1t4CEXKanLKKugXHcnhdMs+4I9dcxV/nb7IU8vWsf18KjUaLUqVmu/vatmo1pbiXM4gEkLXklnyOCE+D+PlcVWjz/rTNeJQ/e96QxUgQCiQU6JcTI3mFJH+72AwqNEb1IiEPpRXr6G0aikxwbYzXLkzP0AdBZnF/Pf2Beh1er7Y+Ur99YoSJa/cPJ+PNz5v8b5PZpkHJZ07lMq3r67g/TXPuL2ddbx55ile7Pah/YLA16nvMyliNqEy08T2Q65PYtxtw9n4006WvPMHlSVKuvSPw9tfgV6nR1lezbpvtnLuYHL9PcOnWz4EnxW7CDBOsJtz3yKlcgcTIl4nRtHgz19em02Yp+1tO2fmksYLWJHA+PanM2icrsedtDsj4CuJpEJj6k2i1itR60z3OTt49cNLbPRxT67cTrTXYGQin0b1RFCsTiFGcVX9H6MlqanV8N6GnfSPiSTCzwehQIDBAFW1tby5dhtKtZoHRrgWmPTzPTNZevAEa0+e52hmLhqdjsFxUYztlkCId4NeyaK7Z/Dxpt0cy8zlRFYeod4KVj1yG9/uPmTVCAR7e/Hj3TP4ZPMe1p+6gK+njO4R9hPJt1UM1CIQSBEIxHY12oUCL8qqV+Inn0pZ9UrC/F4EQKU5T1ZJg2uiRHR5+mPPmiN06RfHIx+Y6j/5BCisGoCWJF+Vw9LMbwiUBlOhKeP2mEfwEts+AP/g/AvoDXpCZBHM7HgPniI536Z9xIXK0/yY/jlSgZSBgcMZEji6/p5H58+hVq1h+7J9rPlqM2u+sly3h6eUaU9cy23/mWazDZHyvkTK+zI46F7+yHzCxAh4S8Ipq80gzNO6u6275pLWnpPqaHdGIMF7JPuLvjG5drrU/DVegIDOPmPJqTmBUlNQvw9XR7z3SJIrt3Oy9Hf6BNzU5G4D7pYMeP+vXSw/fIqz/zXfy+3+8iesPn7OxAjEBQew/MFbHKpbKhZx25C+3DbEdhKb+OAAPr/FXDztkdFDeGT0EAt3GOkaFsyX/0SfTn/he1692/75Q1slzHceKfk34OUxEIXM/iFyadUKvKQD0eqKkUvrXDoNdArbaPM+W2j/ccV1dYSV5Jfz2RM/culsNjqtnrRTmXy4wRhpv3XZftYv2klOWiE/nzGmX8xJLeDDh74jIj6UlBMZPPvVPcQkGnVs9q49ym+fbqBzUozL/5/GpFWd5+aoezhUspsNeSuY1uFOq2UrtRXcF/csPhI/thesZ1X2Ym6Ouo+7Y5/kvXPPcXv0I2ZvAmDMFfD8j48w6cFxLJi7iLxLBdQo1QhFQmReHvQd3YM+I7tx9eQB+AU7nvjGWxJKtdZUAr6DVxJ/ZDxOJ59rEAksn925ay5p7TmpjjZlBHQGDWW1mZTVGrMaldam4yUOwk/aof4P0CtgOsmVOzhQ9D0+knDyVWc4XbaGeO+RZvV18RnH9vwP8RB5E+NlOsnFew8n3nsEewu/pLg2lXDPHpTXZpOm3M2kjh+hENsXhHKGPcnpVvfsZRIx5TWO6d9coXmoNBcJ9nkEfy/H0lXWatMoqfoZP6+G7S8PSReq1H/j5TEIMKDVFSEWOT5eEhZ+zK833sTgSPPAwkUnj7Ly/BlWTbeu7hoQ6surSx5l+fy/qCqv5o7/TKn/bPRNg+k7MpFHRr5hcs/pv5OZ8+o00k5nsfyzv3h64RxU1Wo+m/sjv174mIXPLXG4/bYIkAYT4hFBD9/+LMv8xmbZ9KqL9PA1Gtb+AVfz3jnn3l66D+nMF/vfdLmtSy/dTbRiCL6SCIQCMYWqCyR4m+ZH8BAqKFansezSfXT1HY+XOIgqbTFximH4So2GtPFc4iFSYEDv0lzSdE6K8OxFWW1mi81JdbQpI5Cq3MWmnP/W/76nYAEAo8Pm0dV3AgBigQc3Rn3ML2l3oNKV4y0JZVDQ3RZP+AM8YsmrOU0Pv8n/uGA1RsC4iFc4Wfo758rXkVa5C4UklBjF1ciE7k+b5y3zQFtiLnugNxiortUwvLN9T4e2xruLt/Ds7GvIKizjtW830DHEn+SsQl69ZwLxkcaD3b0n0/jy9710CPHj+dvH4C33YPoL37P8rbu45tEFbP7sIXYcTWZkkutpLJ3BYKiloOJTCis+I9D7bgIVdwKQWfwoWn0xaYW34CntSZivcULyk99IUeW3dA5v8KASCmTkl7+LTq8E9AR534O/l3UPE2fw85CRXOL+hESB4f50H2yUKdmz5igAGedzCY4MAGDQ+N6knnJMvfNY2VayqhsUYa+PaHBx1hvqxrjBrktj488vh26Bn7Qj58v/okZXikggwVsSxoxo872lGzq8x9GSXzlcvBitoRZPkW+TWIKGuWRn/qeIBGIX5xLTOSm5Yhu+0sgWm5PqaFNGoJP3aDp1GW23nFToxZ3xjmlqPNTFuvujAAG9/KfSy7/ldVGWP3gLB9KyGP7eV5RU1SAQgK+njPjgAA7+5+FmuYm2Nj9tOERBaSUfPDq5/lpOUQXfPG+cCB/+YDlfPD2dncdSWLPnDD++PJvSyhpmvrSIdR/ex6h+ndhzIo1Hpg9l7d4zrWYESquWYUBLl/DdVKsPkVP2n3oj0DFwPh2Zb3ZPqO+zhPqaOwPEhax0+vmF1VWUqIzuipkV5fg30YoqqKri88N/E+sX4HTd9vBUNARA1p2FdOwcTkGWUab4+C7H8m1UaIr5I8s0AKuxEZAIpSxOX0iFppQH4hvEIL9L+5hSTRELk98mVtGZCWHT6O6bxIfnX0Rn0BHkEcq8ru/Ul782/Ca+Sf0AT7EXw4LGMSDA+cQ49hgf8apD5Tp69aejl+2YBHtzyYjQJxkR+qTJtRBZF7P5qTXnpDralBH4/87A2A7sfPa+y92MZqOQe/D3mXTOpOXRLdYYNSlvpKBYt6prLJHR+BA2MSaU5KwiruoZwx87T1Jc7nhijubgK59EpWoLKfmTEQpldAiwrf/jbpafO82HfxuT3jyz9S+LZWRiMV9OsJb0xj7v3fcN+ZnFlBdX8v1rK7jrFeuHop5eHjz64a08NfFdBo53LE9uivKYzc+FCLk12jyh0pxYy3ENT3WxvJ3TwzeJHr7u13y6gjlXjMAVnGbK8J6M6d+Z5xauYeXbd1kt1ys+gg9+3kZReRWbDpxnUDeje1xidCi/bDzMbRP6k5Zbgo9Xy6bPq0MokBEV+L9WeZYlHkwayG09+tDrm8+5tUdvYnwb+/ALCPD0ZGB4JBHejr36T3/UPBDs2a/Mxc4i4kL45oDxjKD74E6880eDu+rQSf0YOsm4Lz/ziYlm9zYltcq2ETBclo2dKzSHK0bgCi7ROSqYx2YMQ11rPYjMVyHjxTvH8uSnfxAW6MMLd4wBIDzIh/TcUoRCAQa9gc5R7dfl1FkUUinRvn5cG9/Z4sFwW8aAgTSlZd37K7Rf2qSUdFulucFiV7gCwLv7dnFdQmeTvMPtgXzVJRYmm8uNv9qj5SKtr2CXK1LSV7hCe2PeEPcfcrYGm/J+uNxNuEIL0OYyi13hCldom6RXn7Ff6Artjv83bwIFqnT2F6+mpDaXck0RNbpKNHo1YoEUidADmUiOnyQEP2kovfxGEC5LQCJ0l1um+RuZRl/L5vxFFKjSKanNRaWrQmNQ4ysJQS7yJkQWTbRXd2K8euAnaZk98WpdJTk1F8mrSSNPlUp2zUVUuirU+moECBELpITIogiQhhMqiyFKnkikvHOLSdY6QlrVSS5WHiZflUaxOgeVXkmtXoVc5IuvJIgAj3DCZfFEeXWjg6d7RMrq+ulY6RaKa3NR6ZT1/SQRyJCLvVGI/U36qYO8i1ue7SgFqnQyqs+RU3ORtKqT9ePbgB6JQIa3xL9+fAdIw+kg70yUvJvbnq8zaNHoL5/cuC20Bg2Xqk6SpjxJniqN7Jrz1OrVCBEiFcrwkQTRx3808Yokgj0ub54JvUFPevVpdhcuNxnfYoGUYI+OJuM7QhaPUGBfTr65tOszgXJNEYdK1nOqfBeltc4ltRYJRER4dqKL90ASfYcQKDUPT2+KtTOBmVHPkehjjEiu0SnZVbico6WbqNE5pq0+J+4douSJ9gs6SGltHn9kf0Zm9dlGwTuOoRD7cW/8h/hK3KPiubfodzY22kbwEMp5vpt5dKrWUMuhkg1syP3W4br7+F/D2NA78BI7nz2stDaPc5UHOFex36V+uiroRgYF3uC2frJEc8Y3QEd5V6fGd2NSlMfIV6WRp7pEvuoSRepMdAb3JR96NvEn5KLmB0Ctz/2aE2XbHf6uhcliGRI0mZ6+w90ywTo7vvcUrqRSa55G0hKeIgWPdFpgb3z/e88EVucs4GjpJqe/vHXoDDoyq8+RWX2Ozfk/Nutwy0NoTCB9pmIva7IXUK1zLmnHd6nP0dtvFDdEPoTYij6JPQwYuFB5iL+LV5OqtJzv1BGU2jI+v/ggw4NvYmjwdLe/Faj11aj11fV9BpCnSmNF5ocUqjOdqutU2S6uC7/fqXvq+mlJ+hv2C9tgb9EfHCxZ12L9pNSW8emFe10e34DJ+H6o03xCPKJslt+c/yO5Nankqy6hdHCiulxoDRp2FCzl7+I1Tt2Xp0rj96xP2FP0Ow8lfOb2drlzfNfolEhtSFi7i3ZnBDblLWJPkfPRmra4LsI8/6gz+EqCefXUZPsFbXC8bBvHy7aRoEhidszLTk8qXyY/Qb7qUrPaUIdGX8uW/MVsyV/MkKDJjA+bY1bm9fVbeXmiMbq7oFLJQ0v/ZPk9jgneZVafI0GRxIXKgyzNeNvlFea48LuQOJkKtLX7yVlaanzbMwBgXNU2x+i0BvmqS/x46WWqtOXNqqdAlc6rpyYzNHgaY0Jvd1PrjNSNb4ALlQf5pRkLDmfHtyu0KyOwJmchh0rsZ0USCcTIRd54in0QIEClU1KhKbYYyCIRSunpO6JZ7SrV5Fm8HuGZQIhHFF5iX2QiBWp9NafKd1FWaz2XbrLyCPuKVnFV0I1OteHqoCmszLIeAeshlNPN9yo8RQo8RQp0Bi01OiVHSzdTq7cuXrevaBVdvAcS42WqqW4wwJt/bWdSz0SeWrmOZ8Y47vFSoTFq4yzP/MCiARAJRMhFPsjFPngI5aj11eSr0s3KdVbYDuW3hK1+8hDKCfOMJUAaXt9PSm0ZBaoMsmsu2O2n5hoBV8a3TChHra+hQJXeYuO7rVBcm2PXAAR6RNDFeyCeIm9q9TVU6yrJqzGeh1lid+EK5CJvrgqaYvFzV6gb33mqNJZnfmCxjLfY32R8K7VlzTZsrtJujMDuwhV2vyBjw+4g1qs34Z5xZitpjb6WotossqsvsCX/p/o9xG4+VyMTyS1V5zBL0k1D32UiOcODZ1qcyMeE3k5OTTJb8xeTrDxqsb5dhb8xIGCiU6uAHr7D2JK/mHJNIQBigYQYr5508RlIvKIv/tJQi28XY8Pu5ETZdnYULK2/tyk7CpYSE2tqBF65djRvbtjO07+v59Pp15MY5rjCYbmmkFq9ymxSVYj9mNbxKTrKExE30VOv0paTXXORZOURLlQepKy2AD+p8wfqtvqpf8AEq29gWoPGbj81B0fGd5S8G118BnBV0BSb4ztVeZy0qhPU6JROje8HEj41WncrLEh+zOJ1V7ZVZELnsptp9GqWpr9tcaIUC6T0D5jAkKBJ+Eosj8PdhSvYXbQClc5comRT3iIiPDuZLXRcpW58L814x2SMK8R+9PUfQ5yiN7Fe5jIdFyoPmYxvR97e3EG7OBjOqrnAd6nzrL6qdvDszOjQW4lT9HboYXqDjtSqE5wq30U//3F0lHd16D5rB8ON6ezdn8mRjzl0WLm9YAnbC361+Nn1EQ/SP2CCQ+2qY3/xn2zI/ZYIzwTujH3Tqf3Eal0lyzLe4VLVKYufP5DwCWGyWLLLGtL1CQQClh4+wU1JPQHqM5g1punBGUBf/2sQIORI6SbA+Mo7MmQWAwOudcjwGTCQXnXa5S/t/uI/OVG2g/4BE+jhO8xt/VTXR67w+ukpbhvfYBzjf+Z84dT4toe1Lc/WCBZbk7OAQyXmekvBHh2ZFf0fAqRhdutQakv5+dLr5KpSzT7zl4bxUMJ8pz0GW3J81+gq6x1ObPDvOBhelfWp1S/IgIBruTbiPqf20IUCEQmKviQobCdhcZbO3v2ZGfU8IjPZasuMDJlFsTqHk+U7zT47WrrZaSOQ5D+OaHl3wj3jnboPQC7yZmbU8/wvZa7F7aq0qpOEyWK5+2fz/eq/zhpftTc8fKdDzzpZtgutwZgf1lscwC3R/3GqzQIEzVq1JfmPY3CgayJtdf307llzvf+6PnIWvUHv1vENxjF+Y6TllXt75HCJ5SQ+d8e95/CbjkLsz51xb/JNyjMUqk1ls0tr8zhYstYt20KNxzfAnNi3W3V8O0u7MAJN/2B1jAiZyagQxw4jWxp/aSgzOs5z2ADUMTHiPotGIM/CasUeUqHMJQNQh6dIwTUht7EiyzwPbHrVKYYETnJ4ordF3RdEJvLi7rh3XdrWaQ7N9bjwFFneyqjrI2c5VrbF4nVr43tT5kU+Pb4HncGAVq/nw6HX0SswjE+O72HdpXOIhUJ8pTKWjJ/F76mn2ZmdxsfDjHmF+y2dz97pD+Ihahdf/XosnXdIhTKnt3I9hHImRz7Gt6nzzOrcU/S7W4xAYwMgE3k16zvZGrT5kWBte+KJLl+3WJCVKzze2UqiUzvIRZZzsLrTJ9sZevoNt2gE0pQnTX7/cvcB7rmqP2Kh60HnzyX+4vK9l5tEn8Gcrdhvcq1pHznCpapT/Jn9udl1qVBmdYFTWVtLlaaWyXHduaVzb0I8jUYp0suHIE8vvMRSMpVlAEyJ687ZkgKWXDjOrM69WTjyxnZnAFbnLDC7JhXKmNvF8ZiSxnSQd2Fm1PP8mvGWyXV3H8wmKJK4NeYVi5/NfXARKRfzqamptfj5pj3/cWtbbNHmR8Pp8t0Wr7clA/BvQK2vNvl93enzPDB0oNufozcY2HMohSOnMqhQqpg+MYnEhDAKiivxUciQebReAm5bhMnizIyAWl+N3qBzKgjJ2vju6Tvc6j1T47szukM8y1NOMnXdYj4bfgP+Hp58dGw3myffjZdEymfH99aXn92lL0/tXsuYjgkMCG1fyqV6g85iH3X27m/1jcwR4hV9LF43OJARzVEGB1l/KywpVjLjlsH4+skRCi9fhD60AyOQrDxyuZtwBQv4yz2p0WjxlLg2hKxF2j726jKOnm4IqhnaP4HEhDAee20Zw/on8PDtbcPd0VNs+Q1Ora9xanKyNr77BZjnCqgjv1pJqFzBPd0GUFhTxeGCbAaGdsRX6oGXRIpap2VLVjKP9b4KgGhvP+RiCd+dOcS8fm2j/xwlq+a8RY+eOj98V7F2QFuszibIDdISvpIgq4YG4KbZQ7hucttImtOmjUC5pshiuHyQR+RlaI11FGL/Zt0vFIjQX6btH1e5vkdX7l/yBzf0bPA8mdHX8cMsa7o2py/k8sSc0QzoFc3sJ76vvz58YCf2HUltM0bAQ+hp8boBx4OtbI3vCE/r6TZf2LeBDGU5EqGQEE8F9w+7Hn8PT7r4B3PDmkV4Sz24Ojza5J5bu/Tl8V2r250RsLbFFu3VvUWel69Kd4sRiJJ3s/lGsXbVUbwUMmLigvGUmb/dhob7WbirZWjTRiBPlWbxeqQDwmGrsw+wLucgCwc87O5mmREia54/r1ggobadGYGzeQUkBAdwNs964JstrLktzrguiRnXmq+QOoT5kV9YYeGOy4M7tgxcHd/fXjPd4vVPh91g9R5PsYTOfi2nc9RSWHKQEAnE+LbQdrC7YkDsueVWVal582XrkeFXzgT+IaXS8qtykv84ANKrCnj/3ErCZf4kK3P5JOlefCVeANwQOZC+/uan8t+lbmJX4Wm8xZ78t9et+Eq8+Cv3COPDjROPUlvDrL3vs2LoC0iFjnVPa7pzuYLOoKVQnUly5REqtSVUayv+0TipQaVTotHXojXUotXXojFYPqhkJRKJAAAaiklEQVRqSp1khKtEyi1PdNam1hPnsgkPdV4ozhnyVGkUqbMpq82v76cKbTHaf/qncT85KlhmC3vj2x2sSDnFl6f+pltACL9fe5vb6m0tLlroI51By+un3Rfh25gyF4T6LGFtfNcxY9Zgrr/xynaQXSq1JRavyxvtx54ou8SzQ6YRJQ/mk/OreKKLbQ2fGzsMZk7cWL5MXs+G3CPMjBrG6NBeVGlVeIllbC84ydDgbg4bAACpla2By0lOTQrnK/8mRXmMvJpUtAaNW+uvUKl5b9NOdiZf4uq4aJ4dOwx/ueP9IBN5Wby+fP1REhPCGD6wU/01jUbHhh2nefyu5hkeSzTup6zq826v3xaOjO/GHN51gbjECPyDjGcOOenFvHLvd3y98RmL5Z+86Qs+WvYw0+Lb9iLFGjU6pYm7ZWvgru+JtfFdx9aNp9BqdUR2CEDmKUEgMF3+9OjVegf4bdoIqPU1Fq83VugLl/kTJTeGip8sN9eXacq+ovPsLjxNTk0xQ4ON+4oSoZj1uYeZFDmITXnHuCt2jFPtbA2lP0fRGbQcL9tm0e3Qnbyydgt9OoQxd/TVrDl1jpfXbmb+DOvbEU2RCCwfzPXrGcWLH/xZ7wX0wdebeeWTNYwc3JlpE90X3HekdBP7i/6kQJ3htjqdxZHx3ZjVi/dy97xr642APT5a1vJboS2Jyg1vW5cLa+O7jpPHMzh53PrYu7Id9A9avWWr3NjK6hsdxNnbpc2sLuTb1I2sHPoCP6RtRqNv2Idfn3uYocHdyKsppbe/c1GfTXVuLhdpVSdYk72Q4tqcFn9WalEJH0+7FoA7BiXx+3H3ZJ16d94Udh64yLZ958nKK0OvN5DUoyOvz70BgZs86dKqTrS4kXQER8Y3GFf83763luP7knnvySVcN2swE2YOAsBgMPDRvGWknMnmmQ9nEdPZKJ+wddURvnt/PYt3v2hSz68LtpB2Phe9Tl9fft/m06z8dic6nZ6zR9MZNLobr/7vzpb5TzuBu99e2xJf/nDv5W5CPW3aCFjztBA0yoqZV1NGijKPeEUYPX1jbNZXqVXhLZZRq9eyp/AsAwMb9u3kIilLM3YxJqzPZc2s5Sq7C1ewJf8ni5GVlpCJvJCLfPCRBCIVeiIVeiAVeiIRejik0S4SCilSVhGk8KJQWYWoGUFjjREIYMSgTowY1Ml+YReo6ydHCZCGIxN5IRXKTPqpTFPQrLwN4Nj4BoiIDuSlL27n4Rs+5tmPZtExruFQNPtSEXPfvom087ks/2YHT783E4DRk5P47v31ZnWPnzGQ7v1jWPPzvvryX/53FZ+ufAy/QAUv3vUNU+5qGzmQ27qsdXOI7xR6uZtQT5s2Atb8rSs0RQR6GDMlxSpCiVcYVz+PdzENzuggDzT5vZtPRxYNfhKArwc+avLZzdEj+Dp5A181ud4eeO3UjRYnf6FASF+/MQwJmuyU25sjRmDlvbdQXFXNtgup9O0YwQoHcwk05Ysfd9C/VzSD+sQAoFJrWiQgLFl5lJ8vvWazn26IdHz7ZH/xn802Ao6Mb3t0iA2me/8YAPZstB+xXFc2tkt4ffnZj47lmVkLiYwNJiTCj16D4hx6dktjrX8SFH25NebV1m1MK5GfW8at0z+/sh1Uh5fYsq9sjb5hr9BdKqirsvYzuYNdxb42h96gszixeYoUzIx6vsU8lz7euofu4aGMS7Tuz+4Ia7aeJChAUW8Ezibn0be7ew/F9AYd63L+d1n6yRaOjO/GyBUyyouVJm8C7iAjOZ+ZD4xmzNR+bq23uXiJ/RAgMPu7Venajquwu6mqat2DcGjjRsBHEmjxeqEq021JxgE25B5GIhQzMbxtfQkc4Vzl3xav3xbzOhEtKFzVMyKMc/mFfLvvEL6eMhJDg5k7+mqn66mqqcXPp2W9q85V/k1Jba7ZdaFA5HI/6QzaZrfL2fE9/d4RfPLiCmY9dA3X2HEvfO+pJZSXKHnxzq9J6NGBu56eaLWsRqNjyYLN/P79TtQqDZPvGMoNt17l3H+mBRAJRCjEfmY5easvU/KV5nBwf4pD5dIvFbVwS8xp00bAWnLs3Jpk+vpfQ7RXCD8NearZz5kQ3o8J7dAAAJwp32PxeksaAIBrusYTHxxAaXUNKUUlHM0yn2Qdwc/bk9MXchk/3HIEsTuw1kdDAie73E/VWufySFvC3vhuyqDR3Rg0uqGfIqID691Du/eP4e1F99V/9uyHs3j2w1km90dENxidxuVVVWq+3TwPAHWNhjnXvNsmjABAsCyKSqWpESjXFFGtq7QqvtgWeeEp8+TzbYU2bQRCrWizW0sV928ko/rsZXnuoPcX0iU0iP+MH0VCSCAiF113hg1MYMWGoxw6mU6ArxeV1Sq85dZdbj9/fabTz7DWR/0CXA/KqnbDlkRbGd8SacM0kHI2B//gtjO5hsviLZ69ZFWfp7O38+lFLydz7h9FZMcAm2WyMor5/qvtrdOgf2jjRiCabj5XcaZir8n1K0bASKW2pD6faWOi5Iku1+no5HbgmQfJq1Cy+uRZXl23hbTiUvY//YDTz3vmvrE8c9/Y+t+Pns50+5mAtT4KkIa7XOexUss5AJzB1vjemr+Y0aG3NvsZjvDI61Prf+6WFM3nqx5vlec6wqjQWzhYss4sFemq7M+Y2+XbNuOebY9hI7syaWp/vBS24wfyc8ta3Qi4x6+vBenma/m1VKWrtnj934QQy5LFzuQmbsqpsl0OlZvwxQ+8uHojUQF+fDBloksG4HLSnD4Cy0lOXMHa+K5LTfhvRyyQWEyxWKUttyrD3RZ5+c3pdg0AQECQNy+81jKSGNZo80agq89gi9c35H7dyi1pe3iKFBZjGmp0ru1Xaw0adhetcKjshofv5NvZUxmf2MlibmFXCfCzHW7vCu7sI3BvEFNXn8EWXSGV2jK3PaO9MyDwWovXnYn3aC9IJCJGjWkZhVRrtHkjYO1171jZVk6UbW/dxrQxhAKRxQmkQOWaFMKW/J8sbp20JtGRtvdMXcFaH7mqS+POyUcskDAo8HqLn/3bx3cd1jwBKzTFbnsj+zfT5o0AgFxkeaX5e9YnHChe28qtaVtYUit0ZaV6pHQT+4pWuaNJbQ5rfXS2fL+F0rZpiX4aEmRZ9LCtje8AaZjF62W1rsmJO4PISra2FZkfuOXNrKQ2j3yVfe2xlkat0vDbL86Py+bQLozAtRH3WbxuwMC63K9YlvEuRVaS0VtDb9CTqjzO6pwFrMt1LT9wW8Ba9qJqB7c7DBjYkv8Tq7O/cGez3I5KreGXPw+6dK+1PtpasLhN9JM1wbjmjG/A7eM72kpA3cqsj1tc52d4sGWvsFPlu/k+9Xkyqp3XrqrUlnKkdBPfpz3PZxfuJ62qeRHg7qC0tIqvvtjcqs9s095BdfTwHUaizxAWX3qNtKoTZp+fqdhr4mHhIfRELvZBLvJBa9BQq1dRqSmx+vrfw3doi7W9pRkcOIkNueYJt987eytCgZBOin7EKfoQIotCKvSkWltBpbaEjKozpFYdN9v+EQuk+EqDKFa3vAidM2TllvHFjzu4ZdIAp+8dHDiJstpC9hf/aXK9tDbfpJ8GB01CJvRCj76+n7YXLLG4RTYn7m1WZc93Wz+91H2FS+NbKBBRq1dRrM5p8fE9OfJRitRZZFafM7meUX2GN04bE92EymLoKO+KvzQMnUFLrb4Gla6Kam0FeapUKjTF+EgCeazz/5x69oiQmQwJmsyitP+YeQdm11zku9Tn63/3EMr/6R/v+v6p0BS5JQeEq+zfcxGdTs/Vw7sAsOUvyxIfWZmW5cVbknZhBMCYTWh2zEssy3iPC5W2V4RqfQ3q2hpKcU+CiLZOoEeExclIb9BzvvIg5+30Vx0igYjpHZ8iRXm81YzAnsMp6HQGhg80yk/8tdPyii4zt9TidUcZGXIzF5WH3NZPUfJuxHn1cVs/tZfxfW34fXyX9hwavWWDk6+6RL7qUos8WyqUcUfsG/ya8ZZN3Sa1vhp1bTWl5LVIO1zho3eMelx1RuCd19vO1mu7MQJgXKXOin6RHQVL2V7QdiPwWptbol/i25R5zQpgkgpl3BT1HAmKvhgwcLBknRtbaJ13Fv4FUG8EXv+sZZ4rE3m5tZ8A4hS93NpPjcf3zsKlbVJFM9wznkkRj7Iy66PLcigrFcq4NfpVthYsZk/hynZzMPzmB6bR248+NYHo2GCzcumphcz/aENrNQtoZ0YAjO5+I0Nu5lLVSS5VnXJLnR52sgC1dQKlEdwX/yG/Zb7nUiBdmCyW6R2fIcgjEoBYr14Whbtagg9emGby+1P3jiG2g7mmTmpmER9907wArfbQT3Xju6vPIL5MfsItdbp7fPf0G46nWMHKzI/dEjntLEKBkDGht9PN5yq+Smm+bIxYIKGLzyDiFe5LWtSUTl1MD9X79o+lY5T5OPdpYR0tS7Q7I1DHnbFvkll9joMl6zlfcQC13rngMYXYn87e/enjP5ooecvp1rQWftIQ5sS9w8GS9ewv+pMyjWMeGzdEPERf/7EIBQ0+AjKRFxGeCa0Smd0lzlRXvX/PKKIizN1Efbzd8+Wo66f5Fx50uI8CpOFcHTSlVfspTBbL3XHvujy+AZL8x7bY+E5QJPFgp8/YW/S7095S7jJKEZ4J3BH7BgeL13Gh8pDTLr+dvPvRybs/PX2HW5WtbikCgyxLczgSUOZuBO6SYm4mbaIRznDjjz/z5LCrGR4b06rP3ZWfQqJfGEEe7l3dVWgKWJX1Ogb03B67oP56ja6C3zNf5paYT5pVf7W2FLnY3+X7tTo9R09nMqBXdLPacYUr/D+j2Rmw2oWL6BUa+DnlEBW1lnPTNoeLlXsI9+xqYgAAPEU+zTYAACorGvmOIhYJ/7UGoEq1icyCiWQXzqRG3bo+5G0Bg9oxKRODLh1dkWVRwIMppi62x9NdU721xvH0XOb+aD8ZU1uk3W4HXW7cle92/tmdbM45j69ExqeDpuHvYfQZz6+p5O49v6DR67gppi93dx5CurKEfYVpPHXgDzxEYqZG9+Km2CR25iXzyZntaPV64ryDeD3pWnwkMl47tp5uvmGszjxFaW0Nq8eYx1tUaUvYmPspRepL6NFReCmVWTEfAXCmfAsnytZTVpvLA51+rr9nS94XhMjiOFuxnWh5HwYFGQ+9kiv3sa9oMVpDLRMjniFM1pmy2hx2FHxDhSYfscCD7n5j6eVnXdveXZypOMiW/N/QG/RM6/jg/7V37/FV13Ucx1+/8zs7l52z7Vx2dmEbG4iQeJmbhBqCAlpJck0TTe4YZlmmlJWZlzKj0IIAjUgUNOTig8DhlUoINZpGinlZGDDYBozdd647v9+vP37zzMGQDVeszuf5D499D9/f+Z6zs/P+/X7fG/ntS0ZXhip4ruYJLIrKlPx5+NsnQFWGKthUtQKH6kqUbz28jreaXmWEfxy7GrfjVN3MKPruf7ztx2oOrifTcx9OW8+Hx/4/0EOrUe2fbMvLX73wKqtu/lIvtajnli/dSumwAQy70PwcRiJtOBx9Y/G7pA2BFeWvU9nYyI59lYw9YyBb3nufh64ax0X9C1i/+22W7ywnHI8zf+QIJp1t3lPdVV3DD158ifNycrB8JAX2NzQyY/3TWC0WZl1QypdLirvdjqkDSrnlrFE8+PYf+X3lbmadaW4g/r03NlN2+TwAwpo5EafQ7aPQ5ePB4ZMYmJaZOMYPdz3L+tGzCTjcPLZnJwt2b+X+UnMpgmcOvM2vR0zFqXb9gXNZfUwuuJfyug1E9VYuCcxMPDY0YyyFrlJW7/36cfXebfoTkwt+1Gkm5866tXw291Z8tv6Jco+tHxPzf0h97AA+26mvDhpri7N1x3uMG929HcBePrKRKfk3kecciGZogDlLeFPVCuYOvJs9rW+xueq3zBpwZ6L8ljN/xu6m1xLlAFfn38yT+x/ijk8tY/E/5xPWgjh7cE87HP0rja2PoCg22uJVpDpG4U//Nk3BJ2gJbQI0nPaL8ad/m+qj03HaRxCJlRPXDpPj+xV1zT8jHNuJ1nQEi5JOjm8Jja2PEopuB8DluAJv2lePq5sXWMPRpvuJRMtxO6+kJbyFgOc+WkPPEIv/C8MIkeq4zHzeupkoWNG0WqzWfHJ8SwhHX6OueSEKVnQjRF5gLS2hjce1uSe0o59FzXwRI/ICWvOdWLPK0VsewpJ2O3rrYozIc6BYUb2rwOLF0PajtyzAiL2GVn8timMKltT2SWPaYbSWeyD+AYrzS1hcc81yQ0ermwiGjsXzIIp1MP88VMc/Dh7m5kd/D8CSWeYM7dtWl1HbHCTXm8aC68ahKDDz4XUAXDb0DGZeegFv7q+huNBcbfZbq8qYeekFFBfmctvqMg7WN9MUDPP9yaPxpDqpbw0xbenaTsf70PNlb+LPTEuEwPvvVlNc0jeubJM2BADqQ2GenTWd4Usf5q4xo9n0zrtc1L+A4fn5XDFoEB6ng9LFS5l09lA0w+DWZ7Zwx2WjyE1L49rfPQWAbhh8ffMzvPyVOTRFIkx4/AnOycmiOLd7yxRvP7SHP9RUUBlsYGyuubyBZuiUH+1Y/+dEX+AfOsebS8BhdmxNKDiXiX/omCF6eb8hJ61/Kgalfea4lThLvOMpq3qAqYULcVl7dw2guoYg9y99vtshcJH/c6yp/AXne0ZyebZ5BngoUklttJrlH9wNQFqKt1P5oor5ncoB0qwe/PZsLIqFVNVNRAv1KAQAYvF9FGabs0APHPkC6anX0BLaSH5gA6BQVdtxhmpR7OT6VyR+zvEto7puFr60W3HYzJOLcKyc/IC50F/V0Rtw2i/ssm6qfSQ260A0vZmA515CkW0EPD9GUVIAjb01w/Gnzycae4einB0oio2DtZOJtVVwqP5WCrI2Y1U7RrUc2+ZI7O84bF3Pxu6SmgfaIYy2v6FYh2DE96KkmL9PS+p14L4FUNCDK7G4ZqGohaieZWhHx6P61nY6lNZ8B4p9DBbPw2B03B41tH1YA3vQQ0+iB3+DmvFzzszx43ensmz2pE7H+Ol1V2KzqsxYto4PjtTREo6y8ibzd/HV326kdEBely+jTdN4aNpVNIcjzH5kA5eeNZA399dQ09jCi9+fkzjeoOyO0T+hYBSPp+uZ4adbUofAWVlZOKxWMlNdZLvdtESjNITDjHtsFZtn3IDH6aA5GkXTdaqam6kPhxg3xPyiHuA1vygONjXxQZ05yy/D4WDbvLndfv636qtZuWcnT4+ew/XbHk+Uq4qFEl/HxvDBeAyX1QaAO8VOXTTEwI8MLnin8RC1kVYCDjebD+xmRFbHRuH/iQCArpdi7u86n6EZY9l2ZAUuq5dhvo7hn6F4Y5dXAn/Ztbdbz7fvYM8WthvkPpdS76UA/Ll2MyMDE8i2F+BUXUzIm02R6yyC7dsUflj+zcELMTAS5R+ydOo6O5UxDFp7vY7hpIYRA3RApV9mx602p73rVXM7+2gb9MTPx9ZVLZloeiNW1Y6CHcOIcqj+a+T6l6PpLWh6IwYaDlsximJL1NGNVsBAOeZ1H9tm5QTr+ZyIxXktemQTRrwCS/pdGKHVWNLvxojvRWuYjjXzeVBcYJxsYmAcI1aO6m2fKa90jBxTrAPb/x2CEXkhUR5pi6MbRqcreJvVbL/PnUowEuv0mG4YGIaBy2G+L3FN573qWgBSVJV9tQ0UBbxs+FbHng9n52d3Ot5HXTm+hJ/et4knH9+B1+emtSWCO+3Emyc9uGTaSd6D3pPUIdCVYCyGAmS5Op/t5aWn43E4efb9Cvp7MtjXYH5Q8zMyKPJ2nDm+e6SWM/w+bOrJ/0DO9fVjSHoWN76yhs9kdd5l6oFhExi/dTmGYTC58DzmDDbXVJ87+GLufKOMDJuDL58xjEn9z+PHpVcx79Wn0AyDApeHH5V84RO+C6Yt1QtobjtCWGtkfeX3uKb/Ax/7/1+qWURjWw3pKdkM91/T6bEXan6JQ3VT4p3A0IyOrRNvv797S1f31MaqX1MXO4xVsTJngHnmn2KxMa3oO5RVrySihbgk8yqG+cYkyhdVzMdAT5T3FlXxUFN3M3GtCpdjLCnWIjLc0zhYey0KFgwM8gPru308p/1iDtZ+ETBIdYzBYev+1qhx7RDVR6ehqlnYU048dDTbu5CauhtRFDsGbfTzP3Zcm/MyV6EoPRi6m3IORmglSsqnUaxnosfb9901mlGU9PYAiB5fz3Ls8E0rSkoJemideQVhBM26H+PzxYOZungNed50fjG961VbiwtzmfnwOgwDLvlUEcWFuRgGTFu6lkC6i0E55pl9MBrj3qe3oloshGNt/GTq50/60m/6xhX4/C52vb6P+qMtRKNx2mKffJ/q3pC0Q0RXlL9ONK7xtYsvZMxvHuWey8ew7q3dLJk4ngde3saW9ypw2VJo03RemjMT1WLhjapqfvDiS5T260dtMMgNJeczakARBxqbuP6pdWbHrM/Hii9OwpnSNzp9+roRVy9k3vUjKcj9+OGjldX1LF+zg1c2zP8vtax3hKN/pSn4KDm+R053U/qE+JFPo2YsQLGPQau/AdX3BGCgNd4O2r9ASUOxlWBx35aoY0T/iN66FEvqNBRn+y0drQqt+R7QqlCcU7C45pp9CA03mv0OsdfRWxej+lb1+mtYtf1vTB9VCsCi516hKOBl4rCezcV4c9f+3uoT+MRDVJI2BETfMOLqhfxu0eyT7iOwZ38tM25/XEJAnHb7ahtYWLYdTdfJSHVy15QxuOy2Hh2jL4WA3A4Sp9VlFw3G7z15R6vL2bM/sr7CaR+O0z78dDdD9KKigDcxwuhU+Xz/3RnKH0euBIQQ4n+XzBgWQghx6iQEhBAiifWVPoFeWoRBCCFET8iVgBBCJDEJASGESGISAkIIkcQkBIQQIolJCAghRBKTEBBCiCQmISCEEElMQkAIIZKYhIAQQiQxCQEhhEhiEgJCCJHEJASEECKJSQgIIUQSkxAQQogkJiEghBBJTEJACCGSmISAEEIkMQkBIYRIYhICQgiRxCQEhBAiiUkICCFEEpMQEEKIJCYhIIQQSezf1wGgvxx1rRIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "