-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_squad.py
1338 lines (1111 loc) · 63.2 KB
/
run_squad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
sys.path.append('xlnet') # walkaround due to submodule absolute import...
import collections
import os
import os.path
import json
import pickle
import time
import tensorflow as tf
import numpy as np
import sentencepiece as sp
from xlnet import xlnet
import function_builder
import prepro_utils
import model_utils
MAX_FLOAT = 1e30
MIN_FLOAT = -1e30
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("data_dir", None, "Data directory where raw data located.")
flags.DEFINE_string("output_dir", None, "Output directory where processed data located.")
flags.DEFINE_string("model_dir", None, "Model directory where checkpoints located.")
flags.DEFINE_string("export_dir", None, "Export directory where saved model located.")
flags.DEFINE_string("task_name", default=None, help="The name of the task to train.")
flags.DEFINE_string("model_config_path", default=None, help="Config file of the pre-trained model.")
flags.DEFINE_string("init_checkpoint", default=None, help="Initial checkpoint of the pre-trained model.")
flags.DEFINE_string("spiece_model_file", default=None, help="Sentence Piece model path.")
flags.DEFINE_bool("overwrite_data", default=False, help="If False, will use cached data if available.")
flags.DEFINE_integer("random_seed", default=100, help="Random seed for weight initialzation.")
flags.DEFINE_string("predict_tag", None, "Predict tag for predict result tracking.")
flags.DEFINE_bool("do_train", default=False, help="Whether to run training.")
flags.DEFINE_bool("do_predict", default=False, help="Whether to run prediction.")
flags.DEFINE_bool("do_export", default=False, help="Whether to run exporting.")
flags.DEFINE_enum("init", default="normal", enum_values=["normal", "uniform"], help="Initialization method.")
flags.DEFINE_float("init_std", default=0.02, help="Initialization std when init is normal.")
flags.DEFINE_float("init_range", default=0.1, help="Initialization std when init is uniform.")
flags.DEFINE_bool("init_global_vars", default=False, help="If true, init all global vars. If false, init trainable vars only.")
flags.DEFINE_bool("lower_case", default=False, help="Enable lower case nor not.")
flags.DEFINE_integer("doc_stride", default=128, help="Doc stride")
flags.DEFINE_integer("max_seq_length", default=512, help="Max sequence length")
flags.DEFINE_integer("max_query_length", default=64, help="Max query length")
flags.DEFINE_integer("max_answer_length", default=64, help="Max answer length")
flags.DEFINE_integer("train_batch_size", default=48, help="Total batch size for training.")
flags.DEFINE_integer("predict_batch_size", default=32, help="Total batch size for predict.")
flags.DEFINE_integer("train_steps", default=8000, help="Number of training steps")
flags.DEFINE_integer("warmup_steps", default=0, help="number of warmup steps")
flags.DEFINE_integer("max_save", default=5, help="Max number of checkpoints to save. Use 0 to save all.")
flags.DEFINE_integer("save_steps", default=1000, help="Save the model for every save_steps. If None, not to save any model.")
flags.DEFINE_integer("shuffle_buffer", default=2048, help="Buffer size used for shuffle.")
flags.DEFINE_integer("n_best_size", default=5, help="n best size for predictions")
flags.DEFINE_integer("start_n_top", default=5, help="Beam size for span start.")
flags.DEFINE_integer("end_n_top", default=5, help="Beam size for span end.")
flags.DEFINE_string("target_eval_key", default="best_f1", help="Use has_ans_f1 for Model I.")
flags.DEFINE_bool("use_bfloat16", default=False, help="Whether to use bfloat16.")
flags.DEFINE_float("dropout", default=0.1, help="Dropout rate.")
flags.DEFINE_float("dropatt", default=0.1, help="Attention dropout rate.")
flags.DEFINE_integer("clamp_len", default=-1, help="Clamp length")
flags.DEFINE_string("summary_type", default="last", help="Method used to summarize a sequence into a vector.")
flags.DEFINE_float("learning_rate", default=3e-5, help="initial learning rate")
flags.DEFINE_float("min_lr_ratio", default=0.0, help="min lr ratio for cos decay.")
flags.DEFINE_float("lr_layer_decay_rate", default=0.75, help="lr[L] = learning_rate, lr[l-1] = lr[l] * lr_layer_decay_rate.")
flags.DEFINE_float("clip", default=1.0, help="Gradient clipping")
flags.DEFINE_float("weight_decay", default=0.00, help="Weight decay rate")
flags.DEFINE_float("adam_epsilon", default=1e-6, help="Adam epsilon")
flags.DEFINE_string("decay_method", default="poly", help="poly or cos")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
flags.DEFINE_integer("num_hosts", 1, "How many TPU hosts.")
flags.DEFINE_integer("num_core_per_host", 1, "Total number of TPU cores to use.")
flags.DEFINE_string("tpu_job_name", None, "TPU worker job name.")
flags.DEFINE_string("tpu", None, "The Cloud TPU name to use for training.")
flags.DEFINE_string("tpu_zone", None, "GCE zone where the Cloud TPU is located in.")
flags.DEFINE_string("gcp_project", None, "Project name for the Cloud TPU-enabled project.")
flags.DEFINE_string("master", None, "TensorFlow master URL")
flags.DEFINE_integer("iterations", 1000, "number of iterations per TPU training loop.")
class InputExample(object):
"""A single SQuAD example."""
def __init__(self,
qas_id,
question_text,
paragraph_text,
orig_answer_text=None,
start_position=None,
is_impossible=False):
self.qas_id = qas_id
self.question_text = question_text
self.paragraph_text = paragraph_text
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.is_impossible = is_impossible
def __str__(self):
return self.__repr__()
def __repr__(self):
s = "qas_id: %s" % (prepro_utils.printable_text(self.qas_id))
s += ", question_text: %s" % (prepro_utils.printable_text(self.question_text))
s += ", paragraph_text: [%s]" % (" ".join(self.paragraph_text))
if self.start_position:
s += ", start_position: %d" % (self.start_position)
s += ", is_impossible: %r" % (self.is_impossible)
return s
class InputFeatures(object):
"""A single SQuAD feature."""
def __init__(self,
unique_id,
qas_id,
doc_idx,
token2char_raw_start_index,
token2char_raw_end_index,
token2doc_index,
input_ids,
input_mask,
p_mask,
segment_ids,
cls_index,
para_length,
start_position=None,
end_position=None,
is_impossible=None):
self.unique_id = unique_id
self.qas_id = qas_id
self.doc_idx = doc_idx
self.token2char_raw_start_index = token2char_raw_start_index
self.token2char_raw_end_index = token2char_raw_end_index
self.token2doc_index = token2doc_index
self.input_ids = input_ids
self.input_mask = input_mask
self.p_mask = p_mask
self.segment_ids = segment_ids
self.cls_index = cls_index
self.para_length = para_length
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
class OutputResult(object):
"""A single SQuAD result."""
def __init__(self,
unique_id,
answer_prob,
start_prob,
start_index,
end_prob,
end_index):
self.unique_id = unique_id
self.answer_prob = answer_prob
self.start_prob = start_prob
self.start_index = start_index
self.end_prob = end_prob
self.end_index = end_index
class SquadPipeline(object):
"""Pipeline for SQuAD dataset."""
def __init__(self,
data_dir,
task_name):
self.data_dir = data_dir
self.task_name = task_name
def get_train_examples(self):
"""Gets a collection of `InputExample`s for the train set."""
data_path = os.path.join(self.data_dir, "train-{0}.json".format(self.task_name))
data_list = self._read_json(data_path)
example_list = self._get_example(data_list, True)
return example_list
def get_dev_examples(self):
"""Gets a collection of `InputExample`s for the dev set."""
data_path = os.path.join(self.data_dir, "dev-{0}.json".format(self.task_name))
data_list = self._read_json(data_path)
example_list = self._get_example(data_list, False)
return example_list
def _read_json(self,
data_path):
if os.path.exists(data_path):
with open(data_path, "r") as file:
data_list = json.load(file)["data"]
return data_list
else:
raise FileNotFoundError("data path not found: {0}".format(data_path))
def _get_example(self,
data_list,
is_training):
examples = []
for entry in data_list:
for paragraph in entry["paragraphs"]:
paragraph_text = paragraph["context"]
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_position = None
orig_answer_text = None
is_impossible = False
if is_training:
is_impossible = qa["is_impossible"]
if (len(qa["answers"]) != 1) and (not is_impossible):
raise ValueError("For training, each question should have exactly 1 answer.")
if not is_impossible:
answer = qa["answers"][0]
orig_answer_text = answer["text"]
start_position = answer["answer_start"]
else:
start_position = -1
orig_answer_text = ""
example = InputExample(
qas_id=qas_id,
question_text=question_text,
paragraph_text=paragraph_text,
orig_answer_text=orig_answer_text,
start_position=start_position,
is_impossible=is_impossible)
examples.append(example)
return examples
class XLNetTokenizer(object):
"""Default text tokenizer for XLNet"""
def __init__(self,
sp_model_file,
lower_case=False):
"""Construct XLNet tokenizer"""
self.sp_processor = sp.SentencePieceProcessor()
self.sp_processor.Load(sp_model_file)
self.lower_case = lower_case
def tokenize(self,
text):
"""Tokenize text for XLNet"""
processed_text = prepro_utils.preprocess_text(text, lower=self.lower_case)
tokenized_pieces = prepro_utils.encode_pieces(self.sp_processor, processed_text, return_unicode=False)
return tokenized_pieces
def encode(self,
text):
"""Encode text for XLNet"""
processed_text = prepro_utils.preprocess_text(text, lower=self.lower_case)
encoded_ids = prepro_utils.encode_ids(self.sp_processor, processed_text)
return encoded_ids
def token_to_id(self,
token):
"""Convert token to id for XLNet"""
return self.sp_processor.PieceToId(token)
def id_to_token(self,
id):
"""Convert id to token for XLNet"""
return self.sp_processor.IdToPiece(id)
def tokens_to_ids(self,
tokens):
"""Convert tokens to ids for XLNet"""
return [self.sp_processor.PieceToId(token) for token in tokens]
def ids_to_tokens(self,
ids):
"""Convert ids to tokens for XLNet"""
return [self.sp_processor.IdToPiece(id) for id in ids]
class XLNetExampleProcessor(object):
"""Default example processor for XLNet"""
def __init__(self,
max_seq_length,
max_query_length,
doc_stride,
tokenizer):
"""Construct XLNet example processor"""
self.special_vocab_list = ["<unk>", "<s>", "</s>", "<cls>", "<sep>", "<pad>", "<mask>", "<eod>", "<eop>"]
self.special_vocab_map = {}
for (i, special_vocab) in enumerate(self.special_vocab_list):
self.special_vocab_map[special_vocab] = i
self.segment_vocab_list = ["<p>", "<q>", "<cls>", "<sep>", "<pad>"]
self.segment_vocab_map = {}
for (i, segment_vocab) in enumerate(self.segment_vocab_list):
self.segment_vocab_map[segment_vocab] = i
self.max_seq_length = max_seq_length
self.max_query_length = max_query_length
self.doc_stride = doc_stride
self.tokenizer = tokenizer
self.unique_id = 1000000000
def _generate_match_mapping(self,
para_text,
tokenized_para_text,
N,
M,
max_N,
max_M):
"""Generate match mapping for raw and tokenized paragraph"""
def _lcs_match(para_text,
tokenized_para_text,
N,
M,
max_N,
max_M,
max_dist):
"""longest common sub-sequence
f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j))
unlike standard LCS, this is specifically optimized for the setting
because the mismatch between sentence pieces and original text will be small
"""
f = np.zeros((max_N, max_M), dtype=np.float32)
g = {}
for i in range(N):
for j in range(i - max_dist, i + max_dist):
if j >= M or j < 0:
continue
if i > 0:
g[(i, j)] = 0
f[i, j] = f[i - 1, j]
if j > 0 and f[i, j - 1] > f[i, j]:
g[(i, j)] = 1
f[i, j] = f[i, j - 1]
f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0
raw_char = prepro_utils.preprocess_text(para_text[i], lower=self.tokenizer.lower_case, remove_space=False)
tokenized_char = tokenized_para_text[j]
if (raw_char == tokenized_char and f_prev + 1 > f[i, j]):
g[(i, j)] = 2
f[i, j] = f_prev + 1
return f, g
max_dist = abs(N - M) + 5
for _ in range(2):
lcs_matrix, match_mapping = _lcs_match(para_text, tokenized_para_text, N, M, max_N, max_M, max_dist)
if lcs_matrix[N - 1, M - 1] > 0.8 * N:
break
max_dist *= 2
mismatch = lcs_matrix[N - 1, M - 1] < 0.8 * N
return match_mapping, mismatch
def _convert_tokenized_index(self,
index,
pos,
M=None,
is_start=True):
"""Convert index for tokenized text"""
if index[pos] is not None:
return index[pos]
N = len(index)
rear = pos
while rear < N - 1 and index[rear] is None:
rear += 1
front = pos
while front > 0 and index[front] is None:
front -= 1
assert index[front] is not None or index[rear] is not None
if index[front] is None:
if index[rear] >= 1:
if is_start:
return 0
else:
return index[rear] - 1
return index[rear]
if index[rear] is None:
if M is not None and index[front] < M - 1:
if is_start:
return index[front] + 1
else:
return M - 1
return index[front]
if is_start:
if index[rear] > index[front] + 1:
return index[front] + 1
else:
return index[rear]
else:
if index[rear] > index[front] + 1:
return index[rear] - 1
else:
return index[front]
def _find_max_context(self,
doc_spans,
token_idx):
"""Check if this is the 'max context' doc span for the token.
Because of the sliding window approach taken to scoring documents, a single
token can appear in multiple documents. E.g.
Doc: the man went to the store and bought a gallon of milk
Span A: the man went to the
Span B: to the store and bought
Span C: and bought a gallon of
...
Now the word 'bought' will have two scores from spans B and C. We only
want to consider the score with "maximum context", which we define as
the *minimum* of its left and right context (the *sum* of left and
right context will always be the same, of course).
In the example the maximum context for 'bought' would be span C since
it has 1 left context and 3 right context, while span B has 4 left context
and 0 right context.
"""
best_doc_score = None
best_doc_idx = None
for (doc_idx, doc_span) in enumerate(doc_spans):
doc_start = doc_span["start"]
doc_length = doc_span["length"]
doc_end = doc_start + doc_length - 1
if token_idx < doc_start or token_idx > doc_end:
continue
left_context_length = token_idx - doc_start
right_context_length = doc_end - token_idx
doc_score = min(left_context_length, right_context_length) + 0.01 * doc_length
if best_doc_score is None or doc_score > best_doc_score:
best_doc_score = doc_score
best_doc_idx = doc_idx
return best_doc_idx
def convert_squad_example(self,
example,
is_training=True,
logging=False):
"""Converts a single `InputExample` into a single `InputFeatures`."""
query_tokens = self.tokenizer.tokenize(example.question_text)
if len(query_tokens) > self.max_query_length:
query_tokens = query_tokens[:self.max_query_length]
para_text = example.paragraph_text
para_tokens = self.tokenizer.tokenize(example.paragraph_text)
char2token_index = []
token2char_start_index = []
token2char_end_index = []
char_idx = 0
for i, token in enumerate(para_tokens):
char_len = len(token)
char2token_index.extend([i] * char_len)
token2char_start_index.append(char_idx)
char_idx += char_len
token2char_end_index.append(char_idx - 1)
tokenized_para_text = ''.join(para_tokens).replace(prepro_utils.SPIECE_UNDERLINE, ' ')
N, M = len(para_text), len(tokenized_para_text)
max_N, max_M = 1024, 1024
if N > max_N or M > max_M:
max_N = max(N, max_N)
max_M = max(M, max_M)
match_mapping, mismatch = self._generate_match_mapping(para_text, tokenized_para_text, N, M, max_N, max_M)
raw2tokenized_char_index = [None] * N
tokenized2raw_char_index = [None] * M
i, j = N-1, M-1
while i >= 0 and j >= 0:
if (i, j) not in match_mapping:
break
if match_mapping[(i, j)] == 2:
raw2tokenized_char_index[i] = j
tokenized2raw_char_index[j] = i
i, j = i - 1, j - 1
elif match_mapping[(i, j)] == 1:
j = j - 1
else:
i = i - 1
if all(v is None for v in raw2tokenized_char_index) or mismatch:
tf.logging.warning("raw and tokenized paragraph mismatch detected for example: %s" % example.qas_id)
token2char_raw_start_index = []
token2char_raw_end_index = []
for idx in range(len(para_tokens)):
start_pos = token2char_start_index[idx]
end_pos = token2char_end_index[idx]
raw_start_pos = self._convert_tokenized_index(tokenized2raw_char_index, start_pos, N, is_start=True)
raw_end_pos = self._convert_tokenized_index(tokenized2raw_char_index, end_pos, N, is_start=False)
token2char_raw_start_index.append(raw_start_pos)
token2char_raw_end_index.append(raw_end_pos)
if is_training:
if not example.is_impossible:
raw_start_char_pos = example.start_position
raw_end_char_pos = raw_start_char_pos + len(example.orig_answer_text) - 1
tokenized_start_char_pos = self._convert_tokenized_index(raw2tokenized_char_index, raw_start_char_pos, is_start=True)
tokenized_end_char_pos = self._convert_tokenized_index(raw2tokenized_char_index, raw_end_char_pos, is_start=False)
tokenized_start_token_pos = char2token_index[tokenized_start_char_pos]
tokenized_end_token_pos = char2token_index[tokenized_end_char_pos]
assert tokenized_start_token_pos <= tokenized_end_token_pos
else:
tokenized_start_token_pos = tokenized_end_token_pos = -1
else:
tokenized_start_token_pos = tokenized_end_token_pos = None
# The -3 accounts for [CLS], [SEP] and [SEP]
max_para_length = self.max_seq_length - len(query_tokens) - 3
total_para_length = len(para_tokens)
# We can have documents that are longer than the maximum sequence length.
# To deal with this we do a sliding window approach, where we take chunks
# of the up to our max length with a stride of `doc_stride`.
doc_spans = []
para_start = 0
while para_start < total_para_length:
para_length = total_para_length - para_start
if para_length > max_para_length:
para_length = max_para_length
doc_spans.append({
"start": para_start,
"length": para_length
})
if para_start + para_length == total_para_length:
break
para_start += min(para_length, self.doc_stride)
feature_list = []
for (doc_idx, doc_span) in enumerate(doc_spans):
input_tokens = []
segment_ids = []
p_mask = []
doc_token2char_raw_start_index = []
doc_token2char_raw_end_index = []
doc_token2doc_index = {}
for i in range(doc_span["length"]):
token_idx = doc_span["start"] + i
doc_token2char_raw_start_index.append(token2char_raw_start_index[token_idx])
doc_token2char_raw_end_index.append(token2char_raw_end_index[token_idx])
best_doc_idx = self._find_max_context(doc_spans, token_idx)
doc_token2doc_index[len(input_tokens)] = (best_doc_idx == doc_idx)
input_tokens.append(para_tokens[token_idx])
segment_ids.append(self.segment_vocab_map["<p>"])
p_mask.append(0)
doc_para_length = len(input_tokens)
input_tokens.append("<sep>")
segment_ids.append(self.segment_vocab_map["<p>"])
p_mask.append(1)
# We put P before Q because during pretraining, B is always shorter than A
for query_token in query_tokens:
input_tokens.append(query_token)
segment_ids.append(self.segment_vocab_map["<q>"])
p_mask.append(1)
input_tokens.append("<sep>")
segment_ids.append(self.segment_vocab_map["<q>"])
p_mask.append(1)
cls_index = len(input_tokens)
input_tokens.append("<cls>")
segment_ids.append(self.segment_vocab_map["<cls>"])
p_mask.append(0)
input_ids = self.tokenizer.tokens_to_ids(input_tokens)
# The mask has 0 for real tokens and 1 for padding tokens. Only real tokens are attended to.
input_mask = [0] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < self.max_seq_length:
input_ids.append(self.special_vocab_map["<pad>"])
input_mask.append(1)
segment_ids.append(self.segment_vocab_map["<pad>"])
p_mask.append(1)
assert len(input_ids) == self.max_seq_length
assert len(input_mask) == self.max_seq_length
assert len(segment_ids) == self.max_seq_length
assert len(p_mask) == self.max_seq_length
start_position = None
end_position = None
is_impossible = example.is_impossible
if is_training:
if not is_impossible:
# For training, if our document chunk does not contain an annotation, set default values.
doc_start = doc_span["start"]
doc_end = doc_start + doc_span["length"] - 1
if tokenized_start_token_pos < doc_start or tokenized_end_token_pos > doc_end:
start_position = 0
end_position = 0
is_impossible = True
else:
start_position = tokenized_start_token_pos - doc_start
end_position = tokenized_end_token_pos - doc_start
else:
start_position = cls_index
end_position = cls_index
if logging:
tf.logging.info("*** Example ***")
tf.logging.info("unique_id: %s" % str(self.unique_id))
tf.logging.info("qas_id: %s" % example.qas_id)
tf.logging.info("doc_idx: %s" % str(doc_idx))
tf.logging.info("doc_token2char_raw_start_index: %s" % " ".join([str(x) for x in doc_token2char_raw_start_index]))
tf.logging.info("doc_token2char_raw_end_index: %s" % " ".join([str(x) for x in doc_token2char_raw_end_index]))
tf.logging.info("doc_token2doc_index: %s" % " ".join(["%d:%s" % (x, y) for (x, y) in doc_token2doc_index.items()]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("p_mask: %s" % " ".join([str(x) for x in p_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
if is_training:
if not is_impossible:
tf.logging.info("start_position: %s" % str(start_position))
tf.logging.info("end_position: %s" % str(end_position))
answer_tokens = input_tokens[start_position:end_position+1]
answer_text = prepro_utils.printable_text("".join(answer_tokens).replace(prepro_utils.SPIECE_UNDERLINE, " "))
tf.logging.info("answer_text: %s" % answer_text)
else:
tf.logging.info("impossible example")
feature = InputFeatures(
unique_id=self.unique_id,
qas_id=example.qas_id,
doc_idx=doc_idx,
token2char_raw_start_index=doc_token2char_raw_start_index,
token2char_raw_end_index=doc_token2char_raw_end_index,
token2doc_index=doc_token2doc_index,
input_ids=input_ids,
input_mask=input_mask,
p_mask=p_mask,
segment_ids=segment_ids,
cls_index=cls_index,
para_length=doc_para_length,
start_position=start_position,
end_position=end_position,
is_impossible=is_impossible)
feature_list.append(feature)
self.unique_id += 1
return feature_list
def convert_examples_to_features(self,
examples,
is_training=True):
"""Convert a set of `InputExample`s to a list of `InputFeatures`."""
features = []
for (idx, example) in enumerate(examples):
if idx % 1000 == 0:
tf.logging.info("Writing example %d of %d" % (idx, len(examples)))
feature_list = self.convert_squad_example(example, is_training, logging=(idx < 20))
features.extend(feature_list)
return features
def save_features_as_tfrecord(self,
features,
output_file,
is_training=True):
"""Save a set of `InputFeature`s to a TFRecord file."""
def create_int_feature(values):
return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
def create_float_feature(values):
return tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
with tf.python_io.TFRecordWriter(output_file) as writer:
for feature in features:
features = collections.OrderedDict()
features["unique_id"] = create_int_feature([feature.unique_id])
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_float_feature(feature.input_mask)
features["p_mask"] = create_float_feature(feature.p_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["cls_index"] = create_int_feature([feature.cls_index])
if is_training == True:
features["start_position"] = create_int_feature([feature.start_position])
features["end_position"] = create_int_feature([feature.end_position])
features["is_impossible"] = create_float_feature([1 if feature.is_impossible else 0])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
def save_features_as_pickle(self,
features,
output_file):
"""Save a set of `InputFeature`s to a Pickle file."""
with open(output_file, 'wb') as file:
pickle.dump(features, file)
def load_features_from_pickle(self,
input_file):
"""Load a set of `InputFeature`s from a Pickle file."""
if not os.path.exists(input_file):
raise FileNotFoundError("feature file not found: {0}".format(input_file))
with open(input_file, 'rb') as file:
features = pickle.load(file)
return features
class XLNetInputBuilder(object):
"""Default input builder for XLNet"""
@staticmethod
def get_input_fn(input_file,
seq_length,
is_training,
drop_remainder,
shuffle_buffer=2048,
num_threads=16):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"unique_id": tf.FixedLenFeature([], tf.int64),
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.float32),
"p_mask": tf.FixedLenFeature([seq_length], tf.float32),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"cls_index": tf.FixedLenFeature([], tf.int64),
}
if is_training:
name_to_features["start_position"] = tf.FixedLenFeature([], tf.int64)
name_to_features["end_position"] = tf.FixedLenFeature([], tf.int64)
name_to_features["is_impossible"] = tf.FixedLenFeature([], tf.float32)
def _decode_record(record,
name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32. So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=shuffle_buffer, seed=np.random.randint(10000))
d = d.apply(tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_batches=num_threads,
drop_remainder=drop_remainder))
return d.prefetch(1024)
return input_fn
@staticmethod
def get_serving_input_fn(seq_length):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def serving_input_fn():
with tf.variable_scope("serving"):
features = {
'unique_id': tf.placeholder(tf.int32, [None], name='unique_id'),
'input_ids': tf.placeholder(tf.int32, [None, seq_length], name='input_ids'),
'input_mask': tf.placeholder(tf.float32, [None, seq_length], name='input_mask'),
'p_mask': tf.placeholder(tf.float32, [None, seq_length], name='p_mask'),
'segment_ids': tf.placeholder(tf.int32, [None, seq_length], name='segment_ids'),
'cls_index': tf.placeholder(tf.int32, [None], name='cls_index'),
}
return tf.estimator.export.build_raw_serving_input_receiver_fn(features)()
return serving_input_fn
class XLNetModelBuilder(object):
"""Default model builder for XLNet"""
def __init__(self,
model_config,
use_tpu=False):
"""Construct XLNet model builder"""
self.model_config = model_config
self.use_tpu = use_tpu
def _generate_masked_data(self,
input_data,
input_mask):
"""Generate masked data"""
return input_data * input_mask + MIN_FLOAT * (1 - input_mask)
def _generate_onehot_label(self,
input_data,
input_depth):
"""Generate one-hot label"""
return tf.one_hot(input_data, depth=input_depth, on_value=1.0, off_value=0.0, dtype=tf.float32)
def _compute_loss(self,
label,
label_mask,
predict,
predict_mask,
label_smoothing=0.0):
"""Compute optimization loss"""
masked_predict = self._generate_masked_data(predict, predict_mask)
masked_label = tf.cast(label, dtype=tf.int32) * tf.cast(label_mask, dtype=tf.int32)
if label_smoothing > 1e-10:
onehot_label = self._generate_onehot_label(masked_label, tf.shape(masked_predict)[-1])
onehot_label = (onehot_label * (1 - label_smoothing) +
label_smoothing / tf.cast(tf.shape(masked_predict)[-1], dtype=tf.float32)) * predict_mask
loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=onehot_label, logits=masked_predict)
else:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=masked_label, logits=masked_predict)
return loss
def _create_model(self,
is_training,
input_ids,
input_mask,
p_mask,
segment_ids,
cls_index,
start_positions=None,
end_positions=None,
is_impossible=None):
"""Creates XLNet-SQuAD model"""
model = xlnet.XLNetModel(
xlnet_config=self.model_config,
run_config=xlnet.create_run_config(is_training, True, FLAGS),
input_ids=tf.transpose(input_ids, perm=[1,0]), # [b,l] --> [l,b]
input_mask=tf.transpose(input_mask, perm=[1,0]), # [b,l] --> [l,b]
seg_ids=tf.transpose(segment_ids, perm=[1,0])) # [b,l] --> [l,b]
initializer = model.get_initializer()
seq_len = tf.shape(input_ids)[-1]
output_result = tf.transpose(model.get_sequence_output(), perm=[1,0,2]) # [l,b,h] --> [b,l,h]
predicts = {}
with tf.variable_scope("mrc", reuse=tf.AUTO_REUSE):
with tf.variable_scope("start", reuse=tf.AUTO_REUSE):
start_result = output_result # [b,l,h]
start_result_mask = 1 - p_mask # [b,l]
start_result = tf.layers.dense(start_result, units=1, activation=None,
use_bias=True, kernel_initializer=initializer, bias_initializer=tf.zeros_initializer,
kernel_regularizer=None, bias_regularizer=None, trainable=True, name="start_project") # [b,l,h] --> [b,l,1]
start_result = tf.squeeze(start_result, axis=-1) # [b,l,1] --> [b,l]
start_result = self._generate_masked_data(start_result, start_result_mask) # [b,l], [b,l] --> [b,l]
start_prob = tf.nn.softmax(start_result, axis=-1) # [b,l]
if not is_training:
start_top_prob, start_top_index = tf.nn.top_k(start_prob, k=FLAGS.start_n_top) # [b,l] --> [b,k], [b,k]
predicts["start_prob"] = start_top_prob
predicts["start_index"] = start_top_index
with tf.variable_scope("end", reuse=tf.AUTO_REUSE):
if is_training:
# During training, compute the end logits based on the ground truth of the start position
start_index = self._generate_onehot_label(tf.expand_dims(start_positions, axis=-1), seq_len) # [b] --> [b,1,l]
feat_result = tf.matmul(start_index, output_result) # [b,1,l], [b,l,h] --> [b,1,h]
feat_result = tf.tile(feat_result, multiples=[1,seq_len,1]) # [b,1,h] --> [b,l,h]
end_result = tf.concat([output_result, feat_result], axis=-1) # [b,l,h], [b,l,h] --> [b,l,2h]
end_result_mask = 1 - p_mask # [b,l]
end_result = tf.layers.dense(end_result, units=self.model_config.d_model, activation=tf.tanh,
use_bias=True, kernel_initializer=initializer, bias_initializer=tf.zeros_initializer,
kernel_regularizer=None, bias_regularizer=None, trainable=True, name="end_modeling") # [b,l,2h] --> [b,l,h]
end_result = tf.contrib.layers.layer_norm(end_result, center=True, scale=True, activation_fn=None,
reuse=None, begin_norm_axis=-1, begin_params_axis=-1, trainable=True, scope="end_norm") # [b,l,h] --> [b,l,h]
end_result = tf.layers.dense(end_result, units=1, activation=None,
use_bias=True, kernel_initializer=initializer, bias_initializer=tf.zeros_initializer,
kernel_regularizer=None, bias_regularizer=None, trainable=True, name="end_project") # [b,l,h] --> [b,l,1]
end_result = tf.squeeze(end_result, axis=-1) # [b,l,1] --> [b,l]
end_result = self._generate_masked_data(end_result, end_result_mask) # [b,l], [b,l] --> [b,l]
end_prob = tf.nn.softmax(end_result, axis=-1) # [b,l]
else:
# During inference, compute the end logits based on beam search
start_index = self._generate_onehot_label(start_top_index, seq_len) # [b,k] --> [b,k,l]
feat_result = tf.matmul(start_index, output_result) # [b,k,l], [b,l,h] --> [b,k,h]
feat_result = tf.expand_dims(feat_result, axis=1) # [b,k,h] --> [b,1,k,h]
feat_result = tf.tile(feat_result, multiples=[1,seq_len,1,1]) # [b,1,k,h] --> [b,l,k,h]
end_result = tf.expand_dims(output_result, axis=-2) # [b,l,h] --> [b,l,1,h]
end_result = tf.tile(end_result, multiples=[1,1,FLAGS.start_n_top,1]) # [b,l,1,h] --> [b,l,k,h]
end_result = tf.concat([end_result, feat_result], axis=-1) # [b,l,k,h], [b,l,k,h] --> [b,l,k,2h]
end_result_mask = tf.expand_dims(1 - p_mask, axis=1) # [b,l] --> [b,1,l]
end_result_mask = tf.tile(end_result_mask, multiples=[1,FLAGS.start_n_top,1]) # [b,1,l] --> [b,k,l]
end_result = tf.layers.dense(end_result, units=self.model_config.d_model, activation=tf.tanh,
use_bias=True, kernel_initializer=initializer, bias_initializer=tf.zeros_initializer,
kernel_regularizer=None, bias_regularizer=None, trainable=True, name="end_modeling") # [b,l,k,2h] --> [b,l,k,h]
end_result = tf.contrib.layers.layer_norm(end_result, center=True, scale=True, activation_fn=None,
reuse=None, begin_norm_axis=-1, begin_params_axis=-1, trainable=True, scope="end_norm") # [b,l,k,h] --> [b,l,k,h]
end_result = tf.layers.dense(end_result, units=1, activation=None,
use_bias=True, kernel_initializer=initializer, bias_initializer=tf.zeros_initializer,
kernel_regularizer=None, bias_regularizer=None, trainable=True, name="end_project") # [b,l,k,h] --> [b,l,k,1]
end_result = tf.transpose(tf.squeeze(end_result, axis=-1), perm=[0,2,1]) # [b,l,k,1] --> [b,k,l]
end_result = self._generate_masked_data(end_result, end_result_mask) # [b,k,l], [b,k,l] --> [b,k,l]
end_prob = tf.nn.softmax(end_result, axis=-1) # [b,k,l]
end_top_prob, end_top_index = tf.nn.top_k(end_prob, k=FLAGS.end_n_top) # [b,k,l] --> [b,k,k], [b,k,k]
predicts["end_prob"] = end_top_prob
predicts["end_index"] = end_top_index
with tf.variable_scope("answer", reuse=tf.AUTO_REUSE):
cls_index = self._generate_onehot_label(tf.expand_dims(cls_index, axis=-1), seq_len) # [b] --> [b,1,l]
feat_result = tf.matmul(tf.expand_dims(start_prob, axis=1), output_result) # [b,l], [b,l,h] --> [b,1,h]
answer_result = tf.matmul(cls_index, output_result) # [b,1,l], [b,l,h] --> [b,1,h]
answer_result = tf.squeeze(tf.concat([feat_result, answer_result], axis=-1), axis=1) # [b,1,h], [b,1,h] --> [b,2h]
answer_result_mask = tf.reduce_max(1 - p_mask, axis=-1) # [b,l] --> [b]
answer_result = tf.layers.dense(answer_result, units=self.model_config.d_model, activation=tf.tanh,
use_bias=True, kernel_initializer=initializer, bias_initializer=tf.zeros_initializer,
kernel_regularizer=None, bias_regularizer=None, trainable=True, name="answer_modeling") # [b,2h] --> [b,h]
answer_result = tf.layers.dropout(answer_result,
rate=FLAGS.dropout, seed=np.random.randint(10000), training=is_training) # [b,h] --> [b,h]
answer_result = tf.layers.dense(answer_result, units=1, activation=None,
use_bias=False, kernel_initializer=initializer, bias_initializer=tf.zeros_initializer,
kernel_regularizer=None, bias_regularizer=None, trainable=True, name="answer_project") # [b,h] --> [b,1]
answer_result = tf.squeeze(answer_result, axis=-1) # [b,1] --> [b]
answer_result = self._generate_masked_data(answer_result, answer_result_mask) # [b], [b] --> [b]
answer_prob = tf.sigmoid(answer_result) # [b]
predicts["answer_prob"] = answer_prob
with tf.variable_scope("loss", reuse=tf.AUTO_REUSE):
loss = tf.constant(0.0, dtype=tf.float32)
if is_training:
start_label = start_positions # [b]
start_label_mask = tf.reduce_max(1 - p_mask, axis=-1) # [b,l] --> [b]
start_loss = self._compute_loss(start_label, start_label_mask, start_result, start_result_mask) # [b]
end_label = end_positions # [b]
end_label_mask = tf.reduce_max(1 - p_mask, axis=-1) # [b,l] --> [b]
end_loss = self._compute_loss(end_label, end_label_mask, end_result, end_result_mask) # [b]
loss += tf.reduce_mean(start_loss + end_loss) * 0.5
if is_impossible is not None:
answer_label = is_impossible # [b]
answer_label_mask = tf.reduce_max(1 - p_mask, axis=-1) # [b,l] --> [b]
answer_loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=answer_label * answer_label_mask, logits=answer_result) # [b]