diff --git a/chow.tex b/chow.tex index 88d034ba..51a2bbcc 100644 --- a/chow.tex +++ b/chow.tex @@ -9466,7 +9466,7 @@ \section{Chern classes and the derived category} in $\prod_{p \geq 0} A^p(Y)$. In turn, it suffices to prove this after restricting to a connected component of $Y$. Hence we may assume -the complexes $\mathcal{E}_1^\bullet$ \and $\mathcal{E}_2^\bullet$ +the complexes $\mathcal{E}_1^\bullet$ and $\mathcal{E}_2^\bullet$ are bounded complexes of finite locally free $\mathcal{O}_Y$-modules of fixed rank. In this case the desired equality follows from the multiplicativity of Lemma \ref{lemma-additivity-chern-classes}.