-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
158 lines (126 loc) · 5.33 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from albumentations import Compose, CLAHE, Flip, RandomRotate90, RandomBrightnessContrast, ShiftScaleRotate, RGBShift, Resize, Normalize
from albumentations.pytorch import ToTensor
import cv2
import pandas as pd
import numpy as np
from pathlib import Path
from PIL import Image
from sklearn.preprocessing import MultiLabelBinarizer
DATA_PATH = Path('data')
LAND = ['agriculture', 'artisinal_mine', 'bare_ground', 'blooming', 'blow_down', 'conventional_mine',
'cultivation', 'habitation', 'primary', 'road', 'selective_logging', 'slash_burn', 'water']
WEATHER = ['clear', 'cloudy', 'haze', 'partly_cloudy']
mlb = MultiLabelBinarizer().fit([WEATHER, LAND])
class PlanetDataset(Dataset):
def __init__(self, csv_path, img_folder, ext, transform, val=False):
self.img_folder = img_folder
self.ext = ext
self.transform = transform
# prototype
# if val:
# self.csv = pd.read_csv(csv_path)[:100]
# else:
# self.csv = pd.read_csv(csv_path)[:2000]
self.csv = pd.read_csv(csv_path)
self.x_train = self.csv['image_name']
self.y_train = mlb.transform(self.csv['tags'].str.split()).astype(np.float32)
def __len__(self):
return self.csv.shape[0]
def __getitem__(self, idx):
# img = Image.open(f'{self.img_folder}/{self.x_train[idx]}.{self.ext}')
# img = img.convert('RGB')
img = cv2.imread(str(f'{self.img_folder}/{self.x_train[idx]}.{self.ext}'))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
x = self.transform(image=img)['image']
y = self.y_train[idx]
return (x, y)
def get_data(img_size, batch_size):
CSV_PATH = DATA_PATH/'train_v2.csv'
IMG_FOLDER = DATA_PATH/'train-jpg'
EXT = 'jpg'
SZ = img_size
BS = batch_size
MEAN, STD = np.array([0.485, 0.456, 0.406]), np.array([0.229, 0.224, 0.225])
# torch transforms
# transform = transforms.Compose([
# transforms.Resize(SZ),
# transforms.ToTensor(),
# transforms.Normalize(MEAN, STD)
# ])
transform = {
'train': Compose([
Resize(height=SZ, width=SZ),
CLAHE(clip_limit=1.0, p=0.25),
Flip(p=0.5),
RandomRotate90(p=0.5),
RandomBrightnessContrast(brightness_limit=0.3, contrast_limit=0.3, p=0.5),
ShiftScaleRotate(shift_limit=0.1, scale_limit=0.1, rotate_limit=0),
RGBShift(p=0.25),
Normalize(mean=MEAN, std=STD),
ToTensor()
]),
'val': Compose([
Resize(height=SZ, width=SZ),
Flip(p=0.5),
RandomRotate90(p=0.5),
Normalize(mean=MEAN, std=STD),
ToTensor()
])
}
train_ds = PlanetDataset(CSV_PATH/'train.csv', IMG_FOLDER, EXT, transform['train'])
val_ds = PlanetDataset(CSV_PATH/'val.csv', IMG_FOLDER, EXT, transform['val'], val=True)
train_dl = DataLoader(train_ds, batch_size=BS, shuffle=True, num_workers=4, pin_memory=True, drop_last=True)
val_dl = DataLoader(val_ds, batch_size=BS * 2, shuffle=False, num_workers=4, pin_memory=True, drop_last=True)
# Show the details in the console
print(f'''Train DS: {train_ds.img_folder} \t \
Ext: {train_ds.ext} \t \
x_train: {train_ds.x_train.shape} \t \
y_train: {train_ds.y_train.shape} \t''')
print(f'''Validation DS: {val_ds.img_folder} \t \
Ext: {val_ds.ext} \t \
x_train: {val_ds.x_train.shape} \t \
y_train: {val_ds.y_train.shape} \t''')
return (train_dl, val_dl)
class PlanetDatasetTest(Dataset):
def __init__(self, img_folder, transform):
self.img_folder = img_folder
self.transform = transform
self.filenames = [path.name for path in Path(img_folder).iterdir()]
def __len__(self):
return len(self.filenames)
def __getitem__(self, idx):
# img = Image.open(f'{self.img_folder}/{self.filenames[idx]}')
# img = img.convert('RGB')
# x = self.transform(img)
img = cv2.imread(str(f'{self.img_folder}/{self.filenames[idx]}'))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = self.transform(image=img)['image']
return (img, self.filenames[idx].split('.')[0])
def get_data_test(img_size, batch_size):
IMG_FOLDER = DATA_PATH/'test-jpg'
SZ = img_size
BS = batch_size
MEAN, STD = np.array([0.485, 0.456, 0.406]), np.array([0.229, 0.224, 0.225])
# transform = transforms.Compose([
# transforms.Resize(SZ),
# transforms.ToTensor(),
# transforms.Normalize(MEAN, STD)
# ])
transform = {
'test': Compose([
Resize(height=SZ, width=SZ),
Normalize(mean=MEAN, std=STD),
ToTensor()
])
}
test_ds = PlanetDatasetTest(IMG_FOLDER, transform['test'])
test_dl = DataLoader(test_ds, batch_size=BS, shuffle=False,
num_workers=4, pin_memory=True, drop_last=False)
# Show the details in the console
print(f'''Test DS: {test_ds.img_folder} \t \
Ext: jpg \t \
Number of Images: {len(test_ds.filenames)} \t''')
return (mlb, test_dl)