forked from jamesbowman/raytrace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraytracing.py
159 lines (142 loc) · 4.96 KB
/
raytracing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
w = 400
h = 300
def normalize(x):
x /= np.linalg.norm(x)
return x
def intersect_plane(O, D, P, N):
# Return the distance from O to the intersection of the ray (O, D) with the
# plane (P, N), or +inf if there is no intersection.
# O and P are 3D points, D and N (normal) are normalized vectors.
denom = np.dot(D, N)
if np.abs(denom) < 1e-6:
return np.inf
d = np.dot(P - O, N) / denom
if d < 0:
return np.inf
return d
def intersect_sphere(O, D, S, R):
# Return the distance from O to the intersection of the ray (O, D) with the
# sphere (S, R), or +inf if there is no intersection.
# O and S are 3D points, D (direction) is a normalized vector, R is a scalar.
a = np.dot(D, D)
OS = O - S
b = 2 * np.dot(D, OS)
c = np.dot(OS, OS) - R * R
disc = b * b - 4 * a * c
if disc > 0:
distSqrt = np.sqrt(disc)
q = (-b - distSqrt) / 2.0 if b < 0 else (-b + distSqrt) / 2.0
t0 = q / a
t1 = c / q
t0, t1 = min(t0, t1), max(t0, t1)
if t1 >= 0:
return t1 if t0 < 0 else t0
return np.inf
def intersect(O, D, obj):
if obj['type'] == 'plane':
return intersect_plane(O, D, obj['position'], obj['normal'])
elif obj['type'] == 'sphere':
return intersect_sphere(O, D, obj['position'], obj['radius'])
def get_normal(obj, M):
# Find normal.
if obj['type'] == 'sphere':
N = normalize(M - obj['position'])
elif obj['type'] == 'plane':
N = obj['normal']
return N
def get_color(obj, M):
color = obj['color']
if not hasattr(color, '__len__'):
color = color(M)
return color
def trace_ray(rayO, rayD):
# Find first point of intersection with the scene.
t = np.inf
for i, obj in enumerate(scene):
t_obj = intersect(rayO, rayD, obj)
if t_obj < t:
t, obj_idx = t_obj, i
# Return None if the ray does not intersect any object.
if t == np.inf:
return
# Find the object.
obj = scene[obj_idx]
# Find the point of intersection on the object.
M = rayO + rayD * t
# Find properties of the object.
N = get_normal(obj, M)
color = get_color(obj, M)
toL = normalize(L - M)
toO = normalize(O - M)
# Shadow: find if the point is shadowed or not.
l = [intersect(M + N * .0001, toL, obj_sh)
for k, obj_sh in enumerate(scene) if k != obj_idx]
if l and min(l) < np.inf:
return
# Start computing the color.
col_ray = ambient
# Lambert shading (diffuse).
col_ray += obj.get('diffuse_c', diffuse_c) * max(np.dot(N, toL), 0) * color
# Blinn-Phong shading (specular).
col_ray += obj.get('specular_c', specular_c) * max(np.dot(N, normalize(toL + toO)), 0) ** specular_k * color_light
return obj, M, N, col_ray
def add_sphere(position, radius, color):
return dict(type='sphere', position=np.array(position),
radius=np.array(radius), color=np.array(color), reflection=.5)
def add_plane(position, normal):
return dict(type='plane', position=np.array(position),
normal=np.array(normal),
color=lambda M: (color_plane0
if (int(M[0] * 2) % 2) == (int(M[2] * 2) % 2) else color_plane1),
diffuse_c=.75, specular_c=.5, reflection=.25)
# List of objects.
color_plane0 = 1. * np.ones(3)
color_plane1 = 0. * np.ones(3)
scene = [add_sphere([.75, .1, 1.], .6, [0., 0., 1.]),
add_sphere([-.75, .1, 2.25], .6, [.5, .223, .5]),
add_sphere([-2.75, .1, 3.5], .6, [1., .572, .184]),
add_plane([0., -.5, 0.], [0., 1., 0.]),
]
# Light position and color.
L = np.array([5., 5., -10.])
color_light = np.ones(3)
# Default light and material parameters.
ambient = .05
diffuse_c = 1.
specular_c = 1.
specular_k = 50
depth_max = 5 # Maximum number of light reflections.
col = np.zeros(3) # Current color.
O = np.array([0., 0.35, -1.]) # Camera.
Q = np.array([0., 0., 0.]) # Camera pointing to.
img = np.zeros((h, w, 3))
r = float(w) / h
# Screen coordinates: x0, y0, x1, y1.
S = (-1., -1. / r + .25, 1., 1. / r + .25)
# Loop through all pixels.
for i, x in enumerate(np.linspace(S[0], S[2], w)):
if i % 10 == 0:
print i / float(w) * 100, "%"
for j, y in enumerate(np.linspace(S[1], S[3], h)):
col[:] = 0
Q[:2] = (x, y)
D = normalize(Q - O)
depth = 0
rayO, rayD = O, D
reflection = 1.
# Loop through initial and secondary rays.
while depth < depth_max:
traced = trace_ray(rayO, rayD)
if not traced:
break
obj, M, N, col_ray = traced
# Reflection: create a new ray.
rayO, rayD = M + N * .0001, normalize(rayD - 2 * np.dot(rayD, N) * N)
depth += 1
col += reflection * col_ray
reflection *= obj.get('reflection', 1.)
img[h - j - 1, i, :] = np.clip(col, 0, 1)
import Image
im = Image.fromarray((255 * img).astype(np.uint8), "RGB")
im.save("fig.png")