-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathovrp_iwd.c
457 lines (407 loc) · 9.88 KB
/
ovrp_iwd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
//Solving Open Vehicle Routing Problem Using IWD Algorithm
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<time.h>
#define time(a,b) matrix[a][b]/iwd[i].vel
#define soil(i,j) soil[i][j]
//Global variable and Function Declaration
float probability(int,int,int);
void route(int);
void iwd_algo();
void mainalgo();
void distribute(int);
void local_update(int,int,int);
int global_update(int,int);
float matrix[150][150];
float x[150];
float y[150];
int city;
int node_count;
float total_distance=0;
float soil[150][150];
int global_visit[150];
int global_node[150];
int global_node_var=1;
int algoconst=0;
int visit;
int total_city;
float global_quality=9999999;
float quality();
float demand[150];
float resetvc;
float vehicle_capacity;
int infi=9999;
//Global variable and Function Declaration End
struct iwd //Water Drop Structure
{
float vel;
float soil;
int vc[150];
float count;
int no_visited_nodes;
};
struct iwd iwd[150];
int main()
{
clock_t begin=clock();
int i, j; //Loop Variables
int z=1; // Vehicle Count Variable
int temp2=0;//Variable For Resetting cost Matrix
int q=999999;// Variable For Quality Decision
float matrix_aux[150][150]; // Auxiliary Matrix For Resetting Cost Matrix
int temp;
double time_spent;
FILE *fp;
fp=fopen("Test Data/test.txt","r");
if(fp==NULL)
{
printf("Cannot Open File\n");
getch();
exit(1);
}
fscanf(fp,"%d %f",&city,&vehicle_capacity);
total_city=city;
for(i=0;i<total_city;i++)
{
fscanf(fp,"%f %f %f",&x[i],&y[i],&demand[i]);
}
printf("Total Cities= %d Vehicle capacity= %f\n",city,vehicle_capacity);
for(i=1;i<150;i++)
{
global_node[i]=9999;
}
fclose(fp);
for(i=0;i<total_city;i++)
{
for(j=0;j<total_city;j++)
{
if(i==j)
{
matrix[i][j]=0;
}
else
{
matrix[i][j]=sqrt( (x[i]-y[i])*(x[i]-y[i])+(x[j]-y[j])*(x[j]-y[j]));
}
}
}
node_count=city;
total_city=city;
for(i=0;i<total_city;i++)
{
for(j = 0; j < total_city; j++)
{
matrix_aux[i][j]=matrix[i][j];
}
}
resetvc=vehicle_capacity;
for(i=0;i<total_city-1;i++) //Initializing Dynamic Parameters For Water Drops.
{
iwd[i].vel=100;
iwd[i].soil=0;
iwd[i].count=0;
iwd[i].no_visited_nodes=1;
for(j=0;j<150;j++)
{
iwd[i].vc[j]=infi;
}
}
for(i=0;i<total_city;i++) //Initializing The Soil Content on Each Path
{
for(j=0;j<city;j++)
{
soil[i][j]=1000;
}
}
printf("\nOptimal Path(s):\n");
while(node_count!=1) // Algorithm Begins
{
global_quality=9999999;
distribute(city); //Allocating Water Drops to Each Nodes(Cities)
for(i=0;i<city;i++)
{
iwd_algo();
quality();
for(i=0;i<city-1;i++) //reset water drops
{
iwd[i].vel=100;
iwd[i].soil=0;
iwd[i].count=0;
iwd[i].no_visited_nodes=1;
for(j=0;j<150;j++)
{
iwd[i].vc[j]=infi;
}
}
}
for(i=0;i<=visit;i++) // Printing The Optimal Paths
{
printf("%d",global_visit[i]);
if(i!=visit)
{
printf("->");
}
}
printf("\nRoute Distance = %f\n",global_quality);
total_distance=total_distance+global_quality;
for(i=1;i<150;i++) //Code For Getting Subsequent Paths For Left Over Cities
{
if(global_visit[i]!=9999)
{
node_count--;
}
}
for(i=1;i<150;i++)
{
if(global_visit[i]==9999)
{
temp=i;
break;
}
}
for(i=1;i<temp;i++)
{
global_node[global_node_var]=global_visit[i];
global_node_var++;
}
for(i=1;i<150;i++)
{
if(global_node[i]==9999)
{
temp2=i-1;
break;
}
}
for(i=0;i<temp2;i++)
{
matrix_aux[global_node[i]][global_node[i+1]]=0;
matrix_aux[global_node[i+1]][global_node[i]]=0;
}
for(i=0;i<total_city;i++)
{
for(j=0;j<total_city;j++)
{
matrix[i][j]=matrix_aux[i][j];
}
}
printf("\n");
city=node_count;
visit=0; //Code For Getting Subsequent Paths For Left Over Cities End
z++; // Vehicle Count Variable
}
printf("\nTotal Vehicles Required = %d \n",z-1);
printf("\nTotal Distance Covered = %f \n",total_distance);
clock_t end=clock();
time_spent=(double)(end-begin)/CLOCKS_PER_SEC;
printf("\nExecution Time = %f\n",time_spent);
getch();
return 0;
}
void distribute(int city) //Function For Distributing Water Drops On Nodes
{
int flag=0;
int k=1;int i,j;
int aux[150];
for(i=1;i<total_city;i++)
{
for(j=1;j<(total_city-node_count+1);j++)
{
if(i==global_node[j])
{
flag=1;
break;
}
else
{
continue;
}
}
if(flag==0)
{
aux[k]=i;
k++;
}
flag=0;
}
k=1;
for(i=0;i<city-1;i++)
{
iwd[i].vc[0]=0;
iwd[i].vc[1]=aux[k];
k++;
}
}
void iwd_algo() // Algorithm Function For Satisfying Constraints And Using Other Functions Involved
{
int i;
int time=0;
int flag=0;
for(i=0;i<city-1;i++)
{
while(algoconst<city)
{
if(flag==0)
{
vehicle_capacity=vehicle_capacity-demand[i+1];
flag=1;
}
route(i);
algoconst++;
}
flag=0;
algoconst=0;
vehicle_capacity=resetvc;
}
}
void route(int i) // Route Building Function For Water Drops
{
int cn,nn;
int t;
int k=0;
float temp=0;
int fav_node;
float fav=infi;
for(t=2;t<city;t++)
{
if(iwd[i].vc[t]==infi)
{
t--;
break;
}
}
for(k=1;k<total_city;k++)
{
temp=probability(i,iwd[i].vc[t],k);
if(temp<=fav)
{
fav=temp;
fav_node=k;
}
}
if(fav>=infi)
{
}
else
{
iwd[i].vc[t+1]=fav_node;
iwd[i].no_visited_nodes++;
vehicle_capacity=vehicle_capacity-demand[fav_node];
cn=iwd[i].vc[t];
nn=iwd[i].vc[t+1];
local_update(cn,nn,i);
}
}
float probability(int i,int a,int b) // Probability Function For Selecting Next Node
{
float time;float p;float temp=0;int hit=0;
int var;float soil_curr,del_soil;
for(var=0;var<city;var++)
{
if(b==iwd[i].vc[var])
{
hit=1;
break;
}
}
for(var=0;var<total_city;var++)
{
if(b==global_node[var])
{
hit=1;
break;
}
}
if(a==b||b==0||hit==1||vehicle_capacity<demand[b])
{
return infi;
}
else
{
time=matrix[a][b]/iwd[i].vel;
del_soil=(1000/(0.01+time));
for(var=1;var<city;var++)
{
if(var==a)
{
continue;
}
else
temp=temp+soil(a,var);
}
soil_curr=soil(a,b)-del_soil;
p=soil_curr/temp;
return p;
}
}
void local_update(int cn,int nn,int i) //Local Update Function
{
float del_soil;
float time;
time=(matrix[cn][nn]/iwd[i].vel);
iwd[i].vel=iwd[i].vel+(1000/(0.01+soil[cn][nn]));
del_soil=(1000/(0.01+time));
soil[cn][nn]=soil[nn][cn]=soil[cn][nn]-del_soil;
iwd[i].soil=iwd[i].soil+del_soil;
iwd[i].count=iwd[i].count+matrix[cn][nn];
}
float quality() // Quality Function To Test Quality of Solution
{
int i;int x=1;
int k,j;
int temp,temp1;
float tem;
float q=9999999;
for(i=0;i<city-1;i++)
{
if(iwd[i].no_visited_nodes>visit)
visit=iwd[i].no_visited_nodes;
}
for(i=0;i<city-1;i++)
{
if(iwd[i].no_visited_nodes==visit)
{
tem=iwd[i].count+matrix[0][i+1];
if(tem<q)
{
q=tem;
temp=i;
}
}
}
for(i=0;i<150;i++)
{
if(iwd[temp].vc[i]==infi)
{
temp1=i-1;
break;
}
}
if(q<global_quality)
{
global_quality=q;
global_update(temp1,temp);
}
return q;
}
int global_update(int temp1,int temp) // Global Update Function
{
int i,j;float soil_new[150][150];
for(i=1;i<temp1;i++)
{
soil_new[i][i+1]=soil[i][i+1];
soil_new[i+1][i]=soil[i+1][i];
}
for(i=0;i<city;i++)
{
for(j=0;j<city;j++)
{
soil[i][j]=soil_new[i][j];
}
}
for(i=0;i<150;i++)
{
global_visit[i]=iwd[temp].vc[i];
}
return 0;
}