-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrgbtoolsOLD.py
255 lines (203 loc) · 7.77 KB
/
rgbtoolsOLD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# This file is part of AstroHOG
#
# Copyright (C) 2013-2017 Juan Diego Soler
import sys
import numpy as np
from astropy.io import fits
import matplotlib
#matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as plt
#sys.path.append('/disk2/soler/PYTHON/astroHOG/')
from astrohog import *
from astropy.convolution import convolve_fft
from astropy.convolution import Gaussian2DKernel
from astropy.wcs import WCS
from reproject import reproject_interp
import imageio
SMALLER_SIZE=6
from matplotlib.colors import LinearSegmentedColormap
cdict1 = {'red': ((0.00, 0.0, 0.0),
(0.01, 0.0, 0.0),
(0.02, 0.0, 0.0),
(0.03, 0.0, 0.0),
(0.04, 0.0, 0.0),
(1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.0),
(1.0, 0.0, 0.0)),
'blue': ((0.0, 0.0, 0.0),
(1.0, 0.0, 0.0))
}
COcolort=LinearSegmentedColormap('COcmap', cdict1)
plt.register_cmap(cmap=COcolort)
cdict2 = {'red': ((0.0, 0.0, 0.0),
(1.0, 0.0, 0.0)),
'green': ((0.0, 0.00, 0.0),
(0.0, 0.01, 0.0),
(0.0, 0.02, 0.0),
(0.0, 0.03, 0.0),
(0.0, 0.04, 0.0),
(1.0, 1.00, 1.0)),
'blue': ((0.0, 0.00, 0.0),
(0.0, 0.01, 0.0),
(0.0, 0.02, 0.0),
(0.0, 0.03, 0.0),
(0.0, 0.04, 0.0),
(1.0, 1.00, 1.0))
}
HIcolort=LinearSegmentedColormap('COcmap', cdict2)
plt.register_cmap(cmap=HIcolort)
# -----------------------------------------------------------------------------------------------------------
def tealct():
return HIcolort
# -----------------------------------------------------------------------------------------------------------
def redct():
return COcolort
# -----------------------------------------------------------------------------------------------------------
def rgbcube(cube, zmin, zmax, logscale=False, minref=0., maxref=0., ksz=1, EquiBins=True):
sz=np.shape(cube)
cube[np.isnan(cube).nonzero()]=0.
#cube[(cube < noiselevel)]==noiselevel
rgb=np.zeros([sz[1],sz[2],3])
channels=zmax-zmin+1
indexes=np.arange(zmin,zmax)
pitch=int(channels/3.)
meanI=cube[zmin:zmax].mean(axis=(1,2))
cumsumI=np.cumsum(meanI)
binwd=np.max(cumsumI)/3.
# ------------------------------------------------------------------------------------
firstb=np.max((cumsumI < binwd).nonzero())
if (EquiBins):
tempmap=cube[zmin:zmin+firstb-1,:,:].mean(axis=0)
else:
tempmap=cube[zmin:zmin+pitch-1,:,:].mean(axis=0)
if(logscale):
inmap=np.log10(np.copy(tempmap))
inmap[np.isnan(inmap).nonzero()]=np.min(inmap[np.isfinite(inmap).nonzero()])
else:
if(ksz > 1):
inmap=convolve_fft(tempmap, Gaussian2DKernel(ksz))
else:
inmap=tempmap
if (minref==0.):
minref=np.min(inmap[np.isfinite(inmap).nonzero()])
if (maxref==0.):
maxref=np.max(inmap[np.isfinite(inmap).nonzero()])
inmap[np.isinf(inmap).nonzero()]=minref
inmap[(inmap < minref).nonzero()]=minref
inmap[(inmap > maxref).nonzero()]=maxref
red=(inmap-np.min(inmap))/(np.max(inmap)-np.min(inmap))
# ------------------------------------------------------------------------------------
secondb=np.max((cumsumI < 2.*binwd).nonzero())
if (EquiBins):
tempmap=cube[zmin+firstb:zmin+secondb,:,:].mean(axis=0)
else:
tempmap=cube[zmin+pitch:zmin+2*pitch-1,:,:].mean(axis=0)
if(logscale):
inmap=np.log10(np.copy(tempmap))
inmap[np.isnan(inmap).nonzero()]=np.min(inmap[np.isfinite(inmap).nonzero()])
else:
if(ksz > 1):
inmap=convolve_fft(tempmap, Gaussian2DKernel(ksz))
else:
inmap=tempmap
if (minref==0.):
minref=np.min(inmap[np.isfinite(inmap).nonzero()])
if (maxref==0.):
maxref=np.max(inmap[np.isfinite(inmap).nonzero()])
inmap[np.isinf(inmap).nonzero()]=minref
inmap[(inmap < minref).nonzero()]=minref
inmap[(inmap > maxref).nonzero()]=maxref
green=(inmap-np.min(inmap))/(np.max(inmap)-np.min(inmap))
# ------------------------------------------------------------------------------------
if (EquiBins):
tempmap=cube[zmin+secondb+1:zmax,:,:].mean(axis=0)
else:
tempmap=cube[zmin+2*pitch:zmax,:,:].mean(axis=0)
if(logscale):
inmap=np.log10(np.copy(tempmap))
inmap[np.isnan(inmap).nonzero()]=np.min(inmap[np.isfinite(inmap).nonzero()])
else:
if(ksz > 1):
inmap=convolve_fft(tempmap, Gaussian2DKernel(ksz))
else:
inmap=tempmap
if (minref==0.):
minref=np.min(inmap[np.isfinite(inmap).nonzero()])
if (maxref==0.):
maxref=np.max(inmap[np.isfinite(inmap).nonzero()])
inmap[np.isinf(inmap).nonzero()]=minref
inmap[(inmap < minref).nonzero()]=minref
inmap[(inmap > maxref).nonzero()]=maxref
blue=(inmap-np.min(inmap))/(np.max(inmap)-np.min(inmap))
rgb[:,:,0]=red
rgb[:,:,1]=green
rgb[:,:,2]=blue
return rgb;
# -----------------------------------------------------------------------------------------------------------
def rgbmovie(cube, zmin, zmax, logscale=False, minref=0., maxref=0.45, ksz=1, group=2, prefix='frame', hdr=0, duration=0.5):
sz=np.shape(cube)
rgb=np.zeros([sz[1],sz[2],3])
k=0
images=[]
for i in range(zmin, zmax):
tempmap=cube[i-1-group/2:i-1+group/2,:,:].mean(axis=0)
if(group==0):
tempmap=cube[i-1,:,:]
if(ksz > 1):
inmap=convolve_fft(tempmap, Gaussian2DKernel(ksz))
else:
inmap=tempmap
if(logscale):
inmap=np.log10(np.copy(inmap))
inmap[np.isinf(inmap).nonzero()]=minref
inmap[(inmap < minref).nonzero()]=minref
inmap[(inmap > maxref).nonzero()]=maxref
red=(inmap-np.min(inmap))/(np.max(inmap)-np.min(inmap))
tempmap=cube[i-group/2:i+group/2,:,:].sum(axis=0)/float(group+1)
if(group==0):
tempmap=cube[i,:,:]
if(ksz > 1):
inmap=convolve_fft(tempmap, Gaussian2DKernel(ksz))
else:
inmap=tempmap
if(logscale):
inmap=np.log10(np.copy(inmap))
inmap[np.isinf(inmap).nonzero()]=minref
inmap[(inmap < minref).nonzero()]=minref
inmap[(inmap > maxref).nonzero()]=maxref
green=(inmap-np.min(inmap))/(np.max(inmap)-np.min(inmap))
tempmap=cube[i+1-group/2:i+1+group/2,:,:].sum(axis=0)/float(group+1)
if(group==0):
tempmap=cube[i+1,:,:]
if(ksz > 1):
inmap=convolve_fft(tempmap, Gaussian2DKernel(ksz))
else:
inmap=tempmap
if(logscale):
inmap=np.log10(np.copy(inmap))
inmap[np.isinf(inmap).nonzero()]=minref
inmap[(inmap < minref).nonzero()]=minref
inmap[(inmap > maxref).nonzero()]=maxref
blue=(inmap-np.min(inmap))/(np.max(inmap)-np.min(inmap))
rgb[:,:,0]=red
rgb[:,:,1]=green
rgb[:,:,2]=blue
fig = plt.figure(figsize=(1.5, 3.0), dpi=300)
plt.rc('font', size=SMALLER_SIZE)
if(hdr):
ax1=plt.subplot(1,1,1, projection=WCS(hdr))
im=ax1.imshow(rgb, origin='lower', interpolation='none')
ax1.coords.grid(color='white')
ax1.coords['glon'].set_axislabel('Galactic Longitude')
ax1.coords['glat'].set_axislabel('Galactic Latitude')
else:
ax1=plt.subplot(1,1,1)
im=ax1.imshow(rgb, origin='lower', interpolation='none')
ax1.set_title('Projected HI')
#plt.show()
plt.savefig(prefix+'_'+str(k)+'.png', bbox_inches='tight')
plt.close()
images.append(imageio.imread(prefix+'_'+str(k)+'.png'))
k+=1
imageio.mimsave(prefix+'.gif', images, duration=duration)
#import pdb; pdb.set_trace()