-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransfers_test.cpp
333 lines (288 loc) · 12 KB
/
transfers_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
////////////////////////////////////////////////////////////////////////
//
// transfers_test.cpp: Tests for transfers.cpp.
//
// (c) Copyright Simon Frankau 2018
//
#include <cmath>
#include <cppunit/TestCase.h>
#include <cppunit/extensions/HelperMacros.h>
#include "geom.h"
#include "glut_wrap.h"
#include "transfers.h"
#include "weighting.h"
class TransfersTestCase : public CppUnit::TestCase
{
private:
const int RESOLUTION = 512;
const int SUBDIVISION = 32;
CPPUNIT_TEST_SUITE(TransfersTestCase);
CPPUNIT_TEST(renderEachFaceIsAreaOne);
CPPUNIT_TEST(renderEachFaceIsAreaOneWithDifferentResolution);
CPPUNIT_TEST(renderEachFaceIsAreaOneWithDifferentDirection);
CPPUNIT_TEST(analyticSubtendedTotalAreaIsSix);
CPPUNIT_TEST(analyticVsRenderSubtended);
CPPUNIT_TEST(analyticVsRenderSubtendedOffCentre);
CPPUNIT_TEST(analyticVsRenderSubtendedOutside);
CPPUNIT_TEST(analyticTotalLightIsOne);
CPPUNIT_TEST(analyticVsRenderLight);
CPPUNIT_TEST(analyticVsRenderLight2);
CPPUNIT_TEST(baseCameraFacesRightWay);
CPPUNIT_TEST(backCameraFacesRightWay);
CPPUNIT_TEST(calcAllLightsWorks);
CPPUNIT_TEST_SUITE_END();
void renderEachFaceIsAreaOne();
void renderEachFaceIsAreaOneWithDifferentResolution();
void renderEachFaceIsAreaOneWithDifferentDirection();
void analyticSubtendedTotalAreaIsSix();
void analyticVsRenderSubtended();
void analyticVsRenderSubtendedOffCentre();
void analyticVsRenderSubtendedOutside();
void analyticTotalLightIsOne();
void analyticVsRenderLight();
void analyticVsRenderLight2();
void baseCameraFacesRightWay();
void backCameraFacesRightWay();
void calcAllLightsWorks();
};
CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(TransfersTestCase, "TransfersTestCase");
extern void calcCube(std::vector<Vertex> const &vertices,
std::vector<Quad> const &faces,
std::vector<double> const &weights);
void TransfersTestCase::renderEachFaceIsAreaOne()
{
RenderTransferCalculator tc(cubeVertices, cubeFaces, RESOLUTION);
std::vector<double> sums = tc.calcSubtended(Camera::baseCamera);
for (int i = 0; i < sums.size(); ++i) {
CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, sums[i], 1.0e-6);
}
}
void TransfersTestCase::renderEachFaceIsAreaOneWithDifferentResolution()
{
RenderTransferCalculator tc(cubeVertices, cubeFaces, RESOLUTION * 4);
std::vector<double> sums = tc.calcSubtended(Camera::baseCamera);
for (int i = 0; i < sums.size(); ++i) {
CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, sums[i], 1.0e-6);
}
}
void TransfersTestCase::renderEachFaceIsAreaOneWithDifferentDirection()
{
Camera cam(Vertex(0.0, 0.0, 0.0), // Still at origin
Vertex(1.0, 3.0, 7.0), // Look at arbitrary direction.
Vertex(1.0, 2.0, 0.0)); // Arbitrary 'up'.
RenderTransferCalculator tc(cubeVertices, cubeFaces, RESOLUTION);
std::vector<double> sums = tc.calcSubtended(cam);
for (int i = 0; i < sums.size(); ++i) {
// Slightly larger error, but not much.
CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, sums[i], 5.0e-5);
}
}
void TransfersTestCase::analyticSubtendedTotalAreaIsSix()
{
std::vector<Vertex> vertices(cubeVertices);
std::vector<Quad> quads;
for (int i = 0, n = cubeFaces.size(); i < n; ++i) {
subdivide(cubeFaces[i], vertices, quads, SUBDIVISION, SUBDIVISION);
}
AnalyticTransferCalculator tc(vertices, quads);
std::vector<double> sums = tc.calcSubtended(Camera::baseCamera);
double total = 0.0;
for (int i = 0; i < sums.size(); ++i) {
total += sums[i];
}
// Tolerance is roughly of order 1/(SUBDIVISION*SUBDIVISION).
CPPUNIT_ASSERT_DOUBLES_EQUAL(6.0, total, 2.0e-3);
}
void TransfersTestCase::analyticVsRenderSubtended()
{
std::vector<Vertex> vertices(cubeVertices);
std::vector<Quad> quads;
for (int i = 0, n = cubeFaces.size(); i < n; ++i) {
subdivide(cubeFaces[i], vertices, quads, SUBDIVISION, SUBDIVISION);
}
AnalyticTransferCalculator atc(vertices, quads);
std::vector<double> analyticAreas = atc.calcSubtended(Camera::baseCamera);
RenderTransferCalculator rtc(vertices, quads, 512);
std::vector<double> renderAreas = rtc.calcSubtended(Camera::baseCamera);
CPPUNIT_ASSERT_EQUAL(analyticAreas.size(), renderAreas.size());
for (int i = 0; i < analyticAreas.size(); ++i) {
double relError = std::fabs(renderAreas[i] / analyticAreas[i] - 1);
CPPUNIT_ASSERT(relError < 0.001);
}
}
void TransfersTestCase::analyticVsRenderSubtendedOffCentre()
{
Camera cam(Vertex(0.1, -0.1, 0.1), // Slightly off the origin.
Vertex(0.1, -0.1, 1.0), // Look in same direction.
Vertex(0.0, 1.0, 0.0)); // Usual 'up'.
std::vector<Vertex> vertices(cubeVertices);
std::vector<Quad> quads;
for (int i = 0, n = cubeFaces.size(); i < n; ++i) {
subdivide(cubeFaces[i], vertices, quads, SUBDIVISION, SUBDIVISION);
}
AnalyticTransferCalculator atc(vertices, quads);
std::vector<double> analyticAreas = atc.calcSubtended(cam);
RenderTransferCalculator rtc(vertices, quads, 512);
std::vector<double> renderAreas = rtc.calcSubtended(cam);
CPPUNIT_ASSERT_EQUAL(analyticAreas.size(), renderAreas.size());
for (int i = 0; i < analyticAreas.size(); ++i) {
double relError = std::fabs(renderAreas[i] / analyticAreas[i] - 1);
// Relative errors are pretty big, but smaller than comparing
// against when the positions don't line up.
CPPUNIT_ASSERT(relError < 0.1);
}
}
void TransfersTestCase::analyticVsRenderSubtendedOutside()
{
Camera cam(Vertex(0.0, 0.0, -1.1), // Just outside cube.
Vertex(0.0, 0.0, 1.0), // The rest, as usual
Vertex(0.0, 1.0, 0.0));
std::vector<Vertex> vertices(cubeVertices);
std::vector<Quad> quads;
for (int i = 0, n = cubeFaces.size(); i < n; ++i) {
subdivide(cubeFaces[i], vertices, quads, 16, 16);
}
AnalyticTransferCalculator atc(vertices, quads);
std::vector<double> analyticAreas = atc.calcSubtended(cam);
RenderTransferCalculator rtc(vertices, quads, 512);
std::vector<double> renderAreas = rtc.calcSubtended(cam);
CPPUNIT_ASSERT_EQUAL(analyticAreas.size(), renderAreas.size());
for (int i = 0; i < analyticAreas.size(); ++i) {
double relError = std::fabs(renderAreas[i] / analyticAreas[i] - 1);
// Some faces are back-culled, we don't want NaN.
if (renderAreas[i] == 0.0 || analyticAreas[i] == 0.0) {
relError = std::max(std::fabs(renderAreas[i]),
std::fabs(analyticAreas[i]));
}
// Relative errors are pretty big, but smaller than comparing
// against when the positions don't line up.
CPPUNIT_ASSERT(relError < 0.12);
}
}
void TransfersTestCase::analyticTotalLightIsOne()
{
std::vector<Vertex> vertices(cubeVertices);
std::vector<Quad> quads;
for (int i = 0, n = cubeFaces.size(); i < n; ++i) {
subdivide(cubeFaces[i], vertices, quads, SUBDIVISION, SUBDIVISION);
}
AnalyticTransferCalculator tc(vertices, quads);
std::vector<double> sums = tc.calcLight(Camera::baseCamera);
double total = 0.0;
for (int i = 0; i < sums.size(); ++i) {
total += sums[i];
}
// Tolerance is roughly of order 1/(SUBDIVISION*SUBDIVISION).
CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, total, 1.0e-3);
}
void TransfersTestCase::analyticVsRenderLight()
{
std::vector<Vertex> vertices(cubeVertices);
std::vector<Quad> quads;
for (int i = 0, n = cubeFaces.size(); i < n; ++i) {
subdivide(cubeFaces[i], vertices, quads, SUBDIVISION, SUBDIVISION);
}
AnalyticTransferCalculator atc(vertices, quads);
std::vector<double> analyticLight = atc.calcLight(Camera::baseCamera);
RenderTransferCalculator rtc(vertices, quads, 512);
std::vector<double> renderLight = rtc.calcLight(Camera::baseCamera);
CPPUNIT_ASSERT_EQUAL(quads.size(), renderLight.size());
CPPUNIT_ASSERT_EQUAL(analyticLight.size(), renderLight.size());
for (int i = 0; i < analyticLight.size(); ++i) {
if (renderLight[i] != 0.0 || analyticLight[i] != 0.0) {
double relError = std::fabs(renderLight[i] / analyticLight[i] - 1);
CPPUNIT_ASSERT(relError < 0.003);
}
}
}
// Check scores match up with some camera adjustment applied.
void TransfersTestCase::analyticVsRenderLight2()
{
std::vector<Vertex> vertices(cubeVertices);
std::vector<Quad> quads;
for (int i = 0, n = cubeFaces.size(); i < n; ++i) {
subdivide(cubeFaces[i], vertices, quads, SUBDIVISION, SUBDIVISION);
}
Camera cam(Vertex(0.1, -0.1, 0.05),
Vertex(1.0, 1.0, 1.0),
Vertex(1.0, 0.0, 0.0));
AnalyticTransferCalculator atc(vertices, quads);
std::vector<double> analyticLight = atc.calcLight(cam);
RenderTransferCalculator rtc(vertices, quads, 512);
std::vector<double> renderLight = rtc.calcLight(cam);
CPPUNIT_ASSERT_EQUAL(quads.size(), renderLight.size());
CPPUNIT_ASSERT_EQUAL(analyticLight.size(), renderLight.size());
for (int i = 0; i < analyticLight.size(); ++i) {
// This is messy. Exclude small cases which are error-prone
// and then be a little careful about how we calculate
// relative error...
if (renderLight[i] > 1.0e-5 || analyticLight[i] > 1.0e-5) {
double relError = std::fabs(fmin(renderLight[i], analyticLight[i]) /
fmax(renderLight[i], analyticLight[i]) - 1);
// And even then, for a few polys, the relative error is pretty large.
CPPUNIT_ASSERT(relError < 0.15);
}
}
}
void TransfersTestCase::baseCameraFacesRightWay()
{
std::vector<Vertex> vertices(cubeVertices);
std::vector<Quad> quads;
// Add the face at z = 1.
quads.push_back(cubeFaces[5]);
// And z = -1.
quads.push_back(cubeFaces[4]);
// Should be able to see the face in front of camera, not behind.
AnalyticTransferCalculator atc(vertices, quads);
std::vector<double> analyticLight = atc.calcLight(Camera::baseCamera);
CPPUNIT_ASSERT(analyticLight[0] > 0.0);
CPPUNIT_ASSERT(analyticLight[1] == 0.0);
RenderTransferCalculator rtc(vertices, quads, 512);
std::vector<double> renderLight = rtc.calcLight(Camera::baseCamera);
CPPUNIT_ASSERT(renderLight[0] > 0.0);
CPPUNIT_ASSERT(renderLight[1] == 0.0);
}
void TransfersTestCase::backCameraFacesRightWay()
{
std::vector<Vertex> vertices(cubeVertices);
std::vector<Quad> quads;
// Add the face at z = 1.
quads.push_back(cubeFaces[5]);
// And z = -1.
quads.push_back(cubeFaces[4]);
Camera cam(Vertex(0.1, -0.1, 0.05),
Vertex(0.0, 0.0, -1.0),
Vertex(1.0, 0.0, 0.0));
// Should be able to see the face in front of camera, not behind.
AnalyticTransferCalculator atc(vertices, quads);
std::vector<double> analyticLight = atc.calcLight(cam);
CPPUNIT_ASSERT(analyticLight[0] == 0.0);
CPPUNIT_ASSERT(analyticLight[1] > 0.0);
RenderTransferCalculator rtc(vertices, quads, 512);
std::vector<double> renderLight = rtc.calcLight(cam);
CPPUNIT_ASSERT(renderLight[0] == 0.0);
CPPUNIT_ASSERT(renderLight[1] > 0.0);
}
void TransfersTestCase::calcAllLightsWorks()
{
std::vector<Vertex> vertices(cubeVertices);
std::vector<Quad> quads;
// Add the face at z = 1.
quads.push_back(cubeFaces[5]);
// And z = -1.
quads.push_back(cubeFaces[4]);
AnalyticTransferCalculator atc(vertices, quads);
std::vector<double> analyticLight;
atc.calcAllLights(analyticLight);
CPPUNIT_ASSERT(isnan(analyticLight[0]));
CPPUNIT_ASSERT(analyticLight[1] > 0.0);
CPPUNIT_ASSERT(analyticLight[2] > 0.0);
CPPUNIT_ASSERT(isnan(analyticLight[3]));
RenderTransferCalculator rtc(vertices, quads, 512);
std::vector<double> renderLight;
rtc.calcAllLights(renderLight);
CPPUNIT_ASSERT(renderLight[0] == 0.0);
CPPUNIT_ASSERT(renderLight[1] > 0.0);
CPPUNIT_ASSERT(renderLight[2] > 0.0);
CPPUNIT_ASSERT(renderLight[3] == 0.0);
}