You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
First of all, thank you for switching pensieve to pytorch. I have never used tflearn before so this code is very helpful.
I do have a question though, regarding the results.
I have trained this model for about 6 hours, and tested it out.
Then I tested out the model which was trained for only 10 minutes.
They both had the same log results when I tested them out. This is the log I got from log_sim_better_rl_norway_bus_1.
The results were the same, and I would like to know how your results were.
Thank you.
First of all, thank you for switching pensieve to pytorch. I have never used tflearn before so this code is very helpful.
I do have a question though, regarding the results.
I have trained this model for about 6 hours, and tested it out.
Then I tested out the model which was trained for only 10 minutes.
They both had the same log results when I tested them out. This is the log I got from log_sim_better_rl_norway_bus_1.
The results were the same, and I would like to know how your results were.
Thank you.
29847.713591502812 300 4.0 0.3994262257308885 181801 399.42622573088846 -1.4175327706428205
29848.06980904985 300 7.643782452959923 0.0 155580 356.21754704007714 0.3
29848.411977302432 300 11.301614200380946 0.0 139857 342.1682525789771 0.3
29848.793352338216 300 14.920239164596431 0.0 155432 381.37503578451447 0.3
29850.847318449876 1850 16.866273052935966 0.0 996749 2053.9661116604666 0.30000000000000004
29852.685495402387 1850 19.02809610042305 0.0 801058 1838.1769525129173 1.85
29854.608273929633 1850 21.105317573176414 0.0 905515 1922.7785272466356 1.85
29856.719920413612 1850 22.99367108919782 0.0 1060487 2111.6464839785926 1.85
29858.37393347298 1850 25.339658029832023 0.0 852833 1654.0130593658 1.85
29860.270422712947 1850 27.443168789863602 0.0 913888 1896.4892399684213 1.85
29862.551347971723 1850 29.162243531089494 0.0 939819 2280.925258774106 1.85
29864.524368117232 1850 31.189223385579727 0.0 917428 1973.0201455097676 1.85
29866.64677966636 1850 33.06681183645187 0.0 946851 2122.4115491278617 1.85
29869.11655627464 1850 34.59703522817498 0.0 1036454 2469.776608276887 1.85
29869.517272824778 300 38.1963186780349 0.0 140051 400.7165501400839 -1.25
29871.861239480513 1850 39.852352022300614 0.0 923170 2343.9666557342866 0.30000000000000004
29874.080654547142 1850 41.63293695567216 0.0 966699 2219.415066628456 1.85
29876.424416275324 1850 43.289175227492095 0.0 885714 2343.7617281800626 1.85
29878.13239185504 1200 45.58119964777265 0.0 639204 1707.9755797194414 0.5499999999999999
29879.684837525718 1200 48.02875397709634 0.0 586839 1552.4456706763071 1.2
29881.045270160328 1200 50.668321342485356 0.0 601738 1360.4326346109883 1.2
29882.318552096956 1200 53.39503940585662 0.0 616206 1273.2819366287274 1.2
29883.94155861144 1200 55.77203289137187 0.0 656471 1623.0065144847506 1.2
29885.70044927018 1200 58.01314223263326 0.0 536667 1758.8906587386134 1.2
29890.807338274666 1200 56.90625322814775 0.0 587236 5106.88900448551 1.2
29900.56617402176 1200 51.14741748105628 0.0 590335 9758.835747091465 1.2
29907.562026627103 1200 48.1515648757102 0.0 696376 6995.852605346083 1.2
29912.9650978822 4300 46.74849362061624 0.0 1972048 5403.071255093964 1.1999999999999997
29919.475243167602 4300 44.238348335213566 0.0 2134614 6510.145285402676 4.3
29925.514792005604 4300 42.198799497210345 0.0 2164140 6039.548838003217 4.3
29935.614926041417 4300 36.09866546139935 0.0 2113193 10100.134035810997 4.3
29942.26332888288 4300 33.450262619937334 0.0 2147852 6648.402841462017 4.3
29950.400859763788 4300 29.312731739033495 0.0 2191074 8137.530880903841 4.3
29951.011258483162 300 32.70233301965393 0.0 163444 610.3987193795696 -3.7
29951.712292704746 300 36.00129879807167 0.0 179328 701.0342215822575 0.3
29952.246382602043 300 39.46720890077536 0.0 159914 534.0898972963129 0.3
29953.575395609692 1200 42.13819589312851 0.0 487812 1329.013007646846 0.29999999999999993
29955.590252956637 1200 44.12333854618342 0.0 575591 2014.8573469450957 1.2
29958.515786457578 1200 45.19780504524365 0.0 605884 2925.533500939771 1.2
29959.978119875683 1200 47.73547162713519 0.0 587506 1462.3334181084572 1.2
29961.229798296295 1200 50.48379320652348 0.0 566904 1251.6784206117156 1.2
29962.906950342127 1200 52.806641160693424 0.0 641452 1677.1520458300542 1.2
29964.367988818816 1200 55.34560268400103 0.0 599477 1461.0384766923953 1.2
29965.827642483862 1200 57.885949018954264 0.0 634861 1459.6536650467644 1.2
29967.71775894038 1200 59.93262948008532 0.0 630203 1453.3195388689403 1.2
29970.271553646664 1200 59.93913060476522 0.0 638661 1493.4988753201033 1.2
29971.7401892977 1200 59.63496063273157 0.0 538612 1304.1699720336453 1.2
29973.25052152567 1200 59.7220273102458 0.0 550906 1412.933322485772 1.2
The text was updated successfully, but these errors were encountered: