-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
774 lines (559 loc) · 31.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
import os, shutil, sys, json, itertools
import torch
import data
import numpy as np
import pandas as pd
import scipy.stats
import matplotlib.pyplot as plt
from functools import partial
from itertools import product
from tabulate import tabulate
from collections import defaultdict
from tqdm import tqdm, tqdm_notebook
from models.model_utils import preprocess, compute_divergences
from IPython.core.display import display, HTML
from data import *
from models import w_gan, w_gp_gan, ns_gan, mm_gan, \
ls_gan, fisher_gan, ra_gan, info_gan, \
dra_gan, be_gan
from models.f_gan import forkl_gan, revkl_gan, tv_gan, \
js_gan, hellinger_gan, pearson_gan
plt.switch_backend('agg')
"""
Results
"""
def get_multivariate_results(models, distributions, dimensions,
epochs, samples, hyperparameters):
""" Multivariate distribution results """
results, activation_type = nested_pickle_dict(), 'relu'
lr, hdim, bsize = hyperparameters
for idx, (model_name, module) in enumerate(models.items()):
model = module.Model(image_size=dimensions,
hidden_dim=hdim,
z_dim=int(round(max(hdim/4, 1))),
atype=activation_type)
for dist in distributions:
print('\n', model_name, dist, 'MULTIVARIATE', idx, '/', len(models.keys()))
gen = data.Distribution(dist_type=dist, dim=dimensions)
metrics = model_results(module, epochs, hyperparameters,
gen, samples, dimensions, activation_type)
results[model_name][dist].update(metrics)
return results
def model_results(module, epochs, hyperparameters, gen, samples, dimensions, activation_type):
""" Train a model, get metrics dictionary out """
# Unpack hyperparameters
lr, hdim, bsize = hyperparameters
# Create data iterators
train_iter, test_iter = preprocess(gen, samples, bsize, epochs)
# Init model
model = module.Model(image_size=dimensions,
hidden_dim=hdim,
z_dim=int(round(max(hdim/4, 1))),
atype=activation_type)
# Init trainer
trainer = module.Trainer(model=model,
train_iter=train_iter,
val_iter=None,
test_iter=test_iter)
# Train and get output metrics
metrics = trainer.train(num_epochs=epochs,
lr=lr)
return metrics
"""
"Best" results for a given trial according to minimum performance with respect to
tested hyperparameters for that trial
"""
def crawl_directory(dirname):
""" Walk a nested directory to get all filename ending in a pattern """
for path, subdirs, files in os.walk(dirname):
for name in files:
if not name.endswith('.DS_Store'):
yield os.path.join(path, name)
def remove_empty_dirs(path):
for root, dirnames, filenames in os.walk(path, topdown=False):
for dirname in dirnames:
remove_empty_dir(os.path.realpath(os.path.join(root, dirname)))
def remove_empty_dir(path):
try:
os.rmdir(path)
except OSError:
pass1
def nested_pickle_dict():
""" Picklable defaultdict nested dictionaries """
return defaultdict(nested_pickle_dict)
def format_e(n):
a = '%E' % n
return (a.split('E')[0].rstrip('0').rstrip('.') + 'E' + a.split('E')[1]).lower()
def mean_confidence_interval(data, axis=0, confidence=0.95):
n = data.shape[axis]
mu, std = np.nanmean(data, axis=axis), scipy.stats.sem(data, axis=axis, nan_policy='omit')
h = np.ma.getdata(std) * scipy.stats.t.ppf((1 + confidence) / 2., n-1)
return mu, h, mu-h, mu+h
def load_best(filename):
with open(filename, 'r') as f:
data = json.load(f)
return data
def get_best_multivariate(dirname='../hypertuning/multivariate/'):
""" Find best results """
# Get filenames
dim_numsamples_names = [i for i in os.listdir(dirname) if i != '.DS_Store']
lr_hdim_bsize_names = [i for i in os.listdir(dirname + dim_numsamples_names[0] + '/trial_1')
if '1024' in i]
# For each number of dimensions and training samples
for name in tqdm_notebook(dim_numsamples_names):
# Initialize best dictionary
best_path = '../best/multivariate/{0}/'.format(t)
global_optimal = nested_pickle_dict()
# For each hyperparameter setting
for t in tqdm_notebook(lr_hdim_bsize_names):
# Initialize a dictionary containing the best result
optimal = nested_pickle_dict()
results = []
# Load in the results from each trial
for trial in range(1, 21):
path = dirname + '{0}/trial_{1}/{2}'.format(name, trial, t)
data = []
with open(path) as f:
for line in f:
data.append(json.loads(line))
results.append(data[0])
# Append the results through each model, distribution, and metric
for result in results:
for model, distributions in result.items():
for distribution, metrics in distributions.items():
for metric, values in metrics.items():
if metric in ["LR", "HDIM", 'GLoss', 'DLoss', "BSIZE", "Energy-Distance"]:
continue
else:
# If metric is seen for the first time, initialize it
if 'values' not in optimal[model][distribution][metric]:
optimal[model][distribution][metric]["values"] = []
# Otherwise, append it
optimal[model][distribution][metric]["values"].append(values)
# Go back through each model, distribution, and metric and find the best performing result
# according to minimum performance
for model, distributions in result.items():
for distribution, metrics in distributions.items():
for metric, values in metrics.items():
if metric in ["LR", "HDIM", 'GLoss', 'DLoss', "BSIZE", "Energy-Distance"]:
continue
else:
data_min = np.nanmean(np.nanmin(np.array(optimal[model][distribution][metric]["values"]), axis=1))
# Init global optimal
if 'best' not in global_optimal[model][distribution][metric]:
global_optimal[model][distribution][metric]['best'] = 1e10
# If current min is less than the global best, update it and compute confidence intervals.
if data_min < global_optimal[model][distribution][metric]['best']:
global_optimal[model][distribution][metric]['best'] = data_min
global_optimal[model][distribution][metric]['parameters'] = [metrics["LR"], metrics["HDIM"], metrics["BSIZE"]]
global_optimal[model][distribution][metric]["values"] = optimal[model][distribution][metric]["values"]
mean, h, low, high = mean_confidence_interval(np.array(optimal[model][distribution][metric]["values"]), axis=0)
global_optimal[model][distribution][metric]['low'] = list(low)
global_optimal[model][distribution][metric]['h'] = list(h)
global_optimal[model][distribution][metric]['mean'] = list(mean)
global_optimal[model][distribution][metric]['high'] = list(high)
# Initialize best path and dump results to '../best/multivariate/'
if not os.path.exists(best_path):
os.makedirs(best_path)
with open(best_path + 'data.json', 'w') as outfile:
json.dump(global_optimal, outfile)
def get_best_per_trial(mypath):
""" For a trial, get the best performance for multivariate data according to any hyperparam """
# Get path, files in path
files = os.listdir(mypath)
results = []
# Read in the files
for file in files:
if file == '.DS_Store':
continue
with open(mypath + file, 'r') as f:
data = json.load(f)
results.append(data)
# Initialize best dictionary
optimal = nested_pickle_dict()
# Go through all models, distributionss, metrics, and record the best
for result in results:
for model, distributions in result.items():
for distribution, metrics in distributions.items():
for metric, values in metrics.items():
if metric not in ["LR", "HDIM", "BSIZE"]:
# If metric is seen for the first time, it is the best
if metric not in optimal[model][distribution]:
optimal[model][distribution][metric]["value"] = values
optimal[model][distribution][metric]["parameters"] = [metrics["LR"], metrics["HDIM"], metrics["BSIZE"]]
# Otherwise, compare it the presently considered value
elif min(optimal[model][distribution][metric]["value"]) > min(values):
optimal[model][distribution][metric]["value"] = values
optimal[model][distribution][metric]["parameters"] = [metrics["LR"], metrics["HDIM"], metrics["BSIZE"]]
return optimal
def multivariate_hypertuning2best(dirname='/Users/sob/Desktop/gan_results/hypertuning/multivariate/64_dims_100000_samples/'):
""" Move HYPERTUNING RESULTS TO BEST FOLDER """
best_path = '../best/' + '/'.join(dirname.split('/')[-3:])
if not os.path.exists(best_path):
os.makedirs(best_path)
files = os.listdir(dirname)
files = [f for f in files if f != '.DS_Store']
for idx, f in tqdm.tqdm_notebook(enumerate(files)):
optimal = get_best_per_trial(dirname + f + '/')
if len(os.listdir(dirname + f + '/')) < 60:
print(f, len(os.listdir(dirname + f + '/')))
with open(best_path + '/trial_{0}.json'.format(idx+1), 'w') as outfile:
json.dump(optimal, outfile)
def merge_multivariate(dirname):
""" Merge multivariate results from parallelized jobs into a single folder
(warning: not recommended to run this function multiple times in a row)"""
outdir = dirname
for idx, file in enumerate(os.listdir(dirname)):
if '.DS_Store' in file:
continue
for nest in crawl_directory(dirname + file):
index = 1
if 'dims' not in nest.split('/')[6]:
outdir = '/'.join(nest.split('/')[:7] + nest.split('/')[8:9]) + '/'
else:
# Uncomment the + for mixture
outdir = dirname + nest.split('/')[6] + '/'
# Initialize directory
if not os.path.exists(outdir + 'trial_{0}/'.format(index)):
os.makedirs(outdir + 'trial_{0}/'.format(index))
try:
shutil.move(nest, outdir + 'trial_{0}/'.format(index))
except:
extension = nest.split('/')[-1]
while os.path.exists(outdir + 'trial_{0}/'.format(index) + extension):
index += 1
if not os.path.exists(outdir + 'trial_{0}/'.format(index)):
os.makedirs(outdir + 'trial_{0}/'.format(index))
shutil.move(nest, outdir + 'trial_{0}/'.format(index))
remove_empty_dirs(dirname)
def identify_failed_trials(dirname='../hypertuning/multivariate/'):
""" Get missing runs for all trials due to occasional run failure due to GAN instability """
hidden_dims = [32, 64, 128, 256, 512]
batch_sizes = [128, 256, 512, 1024]
learning_rates = [2e-1, 2e-2, 2e-3]
filenames, hyperparams = [], []
for (lr, hdim, bsize) in product(*[learning_rates, hidden_dims, batch_sizes]):
hyperparam = (lr * min(batch_sizes)/bsize, hdim, bsize)
filename = 'results_{0}.json'.format("_".join([str(i) for i in hyperparam]))
filenames.append(filename)
hyperparams.append((str(format_e(lr)), str(hdim), str(bsize)))
TODO = []
for file in os.listdir(dirname):
if '.DS_Store' in file:
continue
print(file, len(os.listdir(dirname + file)))
idx = 0
try:
for f in os.listdir(dirname + file):
if '.DS_Store' in f:
continue
files = os.listdir(dirname + file + '/' + f)
length = len(files)
print(f, length)
if length >= 60:
idx += 1
else:
missing = [hyperparams[idx] for idx, item in enumerate(filenames) if item not in files]
TODO.extend(missing)
print('{0}/20'.format(idx))
print('\n')
except NotADirectoryError:
files = os.listdir(dirname + file)
missing = [hyperparams[idx] for idx, item in enumerate(filenames) if item not in files]
TODO.extend(missing)
return TODO
"""
VISUALIZATION: Reproducing tables and figures
"""
# Some styling
plt.rcParams['axes.axisbelow'] = True
# For plotting, indexing models
model_names = ["wgan", "wgpgan", "nsgan", "mmgan", "ragan",
"lsgan", "dragan", "began", "infogan", "fishergan",
"fgan_forward_kl", "fgan_reverse_kl", "fgan_jensen_shannon",
"fgan_total_var", "fgan_hellinger", "fgan_pearson"]
plot_names = ['WGAN', 'WGANGP', 'NSGAN', 'MMGAN', 'RAGAN', 'LSGAN', 'DRAGAN', 'BEGAN', 'InfoGAN',
'FisherGAN','ForwGAN', 'RevGAN', 'JSGAN', 'TVGAN', 'HellingerGAN', 'PearsonGAN', 'Expected']
distance_metrics=["KL-Divergence", "Jensen-Shannon", "Wasserstein-Distance"]#, "Energy-Distance"]
title_names=["Kullback-Leibler Divergence", "Jensen-Shannon Divergence", "Wasserstein Distance"]
distributions=['normal', 'beta', 'gumbel', 'laplace', 'exponential', 'gamma']
# Colors
palette = ["#1f77b4", "#aec7e8", "#ff7f0e", "#ffbb78", "#2ca02c", "#98df8a", "#d62728", "#ff9896", "#9467bd",
"#c5b0d5", "#8c564b", "#c49c94", "#e377c2", "#f7b6d2", "#7f7f7f", "#c7c7c7", "#bcbd22" "#dbdb8d",
"#17becf", "#9edae5"]
# For subplotting
plt_idx = [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]
def graph_multivariate(expected=None, ci=True, omit_outliers=True, thresh=8.5, save=False):
""" Print performance as a function of epoch for best performing hyperparameter
Reproduces subplots from Figures 1, 2, and 3
"""
if expected is None:
expected = get_empirical_divergences()
for d in [16, 32, 64, 128]:
for s in [1000, 10000, 100000]:
optimal = load_json('../best/multivariate/{0}_dims_{1}_samples/data.json'.format(d, s))
for m_idx, metric in enumerate(distance_metrics):
fig, axes = plt.subplots(2, 3, sharex=True, sharey=False, figsize=(20,20))
for d_idx, distribution in enumerate(distributions):
# For controlling y-axis limit
max_upper = 0
for idx, model_name in enumerate(model_names):
if model_name in ['vae', 'autoencoder']:
continue
# Mean minimum performance
data = optimal[model_name][distribution][metric]['mean']
if omit_outliers:
# Remove outliers
orig_data = np.array(data)
notnan_indexes = ~np.isnan(orig_data)
outlier_indexes = is_outlier(orig_data[notnan_indexes], thresh=thresh)
data = orig_data.flatten()[~outlier_indexes]
x = np.linspace(0, orig_data.shape[0], data.shape[0])
high = data + np.array(optimal[model_name][distribution][metric]['h']).flatten()[~outlier_indexes]
low = data - np.array(optimal[model_name][distribution][metric]['h']).flatten()[~outlier_indexes]
else:
x = range(0, len(data))
high = data + np.array(optimal[model_name][distribution][metric]['h'])
low = data - np.array(optimal[model_name][distribution][metric]['h'])
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].plot(x,
data,
label=plot_names[idx],
c=palette[idx])
maxi = max(data) + (0.10*max(data))
if maxi > max_upper:
max_upper = maxi
if ci == True:
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].fill_between(x,
high,
[max(0, i) for i in low],
facecolor=palette[idx],
alpha=0.09)
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].grid(alpha=0.3)
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].set_xlim(0, 25)
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].set_ylim(top=max_upper, bottom=0)
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].set_title("{0}".format(distribution.capitalize()),
fontsize=18)
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].plot(x, [expected[distribution][metric][d]]*len(x),
'k--',
label='Expected')
fig.suptitle("{0}: {1}-dimensions {2}-samples".format(title_names[m_idx], d, s), x=0.5, y=0.93, fontsize=20)
fig.text(0.5, 0.08, "Epoch", ha='center', fontsize=18)
plt.legend(loc='center left', bbox_to_anchor=(1, 1), fontsize=20)
if save == True:
plt.savefig('../graphs/multivariate/{0}_{1}_{2}.png'.format(metric, d, s),
dpi=100, bbox_inches='tight')
plt.show()
def graph_fncsamples(param_dict, expected=None, save=False):
""" Plot mean minimum performance with error bars as a function of number samples
Reproduce subplots from Figures 4, 5, 6
"""
if expected is None:
expected = get_empirical_divergences()
samples = [1000, 10000, 100000]
for dims in [16, 32, 64, 128]:
for metric in distance_metrics:
fig, axes = plt.subplots(2, 3, sharex=True, sharey=False, figsize=(15,15))
for d_idx, distribution in enumerate(distributions):
for idx, model_name in enumerate(model_names):
x, y, yerr = [], [], []
for s_idx, val in enumerate(param_dict[metric][model_name][distribution][dims].split('\n')):
mu, err = val.split('±')
x.append(float(samples[s_idx])), y.append(float(mu)), yerr.append(float(err))
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].errorbar(x, y, xerr=0, yerr=yerr,
barsabove=True, label=plot_names[idx],
c=palette[idx], ecolor=palette[idx])
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].set_title("{0}".format(distribution.capitalize()))
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].grid(alpha=0.5)
axes[plt_idx[d_idx][0], plt_idx[d_idx][1]].plot(x, [expected[distribution][metric][dims]]*len(x),
'k--',
label=plot_names[-1])
plt.xscale('log')
fig.suptitle("{0} {1}-dims".format(metric, dims), x=0.5, y=0.93, fontsize=18)
fig.text(0.5, 0.07, "Number samples", ha='center', fontsize=15)
plt.legend(loc='center left', bbox_to_anchor=(1, 1), fontsize=15)
if save:
plt.savefig('../graphs/multivariate/samplesfnc_{0}_{1}_.png'.format(metric, dims), dpi=100)
plt.show()
def print_confidence_intervals():
""" Print confidence intervals for minimum across all runs """
rankings_dict = nested_pickle_dict()
param_dict = nested_pickle_dict()
# Cycle through settings
for dims in [16, 32, 64, 128]:
for samples in [1000, 10000, 100000]:
# Load
optimal = load_json('../best/multivariate/{0}_dims_{1}_samples/data.json'.format(dims, samples))
for metric in distance_metrics:
for distribution in distributions:
for model_name in model_names:
# Find confidence intervals
minimums = np.nanmin(np.array(optimal[model_name][distribution][metric]['values']), axis=1)
mu, h, low, high = mean_confidence_interval(minimums)
# Save to dictionary
if dims not in param_dict[metric][model_name][distribution]:
param_dict[metric][model_name][distribution][dims] = '%.3f ± %.3f' % (np.round(mu, 3), np.round(h, 3))
else:
param_dict[metric][model_name][distribution][dims] += '\n%.3f ± %.3f' % (np.round(mu, 3), np.round(h, 3))
for dims in [16, 32, 64, 128]:
for samples in [1000, 10000, 100000]:
for metric in distance_metrics:
print(metric, dims)
data = [[key, param_dict[metric][key]['normal'][dims], param_dict[metric][key]['beta'][dims],
param_dict[metric][key]['gumbel'][dims], param_dict[metric][key]['laplace'][dims],
param_dict[metric][key]['exponential'][dims], param_dict[metric][key]['gamma'][dims]]
for key in model_names]
print(tabulate(data, headers=['Model', 'Normal', 'Beta', 'Gumbel', 'Laplace', 'Exponential', 'Gamma'], tablefmt='fancy_grid'), '\n')
return param_dict
def get_trainable_param_counts():
""" Counter number of trainable parameters for each model """
models = {
"wgan": w_gan, "wgpgan": w_gp_gan, "nsgan": ns_gan, "lsgan": ls_gan, "mmgan": mm_gan,
"dragan": dra_gan, "began": be_gan, "ragan": ra_gan, "infogan": info_gan, "fishergan": fisher_gan,
"fgan_forward_kl": forkl_gan, "fgan_reverse_kl": revkl_gan, "fgan_jensen_shannon": js_gan,
"fgan_total_var": tv_gan, "fgan_hellinger": hellinger_gan, "fgan_pearson": pearson_gan,
}
for hdim in [32, 64, 128, 256, 512]:
for dimensions in [16, 32, 64, 128]:
print('Hidden dim: {0} | Data dim: {1}'.format(hdim, dimensions))
for idx, (model_name, module) in enumerate(models.items()):
model = module.Model(image_size=dimensions,
hidden_dim=hdim,
z_dim=int(round(max(hdim/4, 1))),
atype='relu')
print(model_name, count_parameters(model))
print('\n')
def print_best_hyperparameters():
""" Print best performing hyperparameters in LaTeX format
(first row = 1k samples, second = 10k, third = 100k) """
# Cycle through settings
for dims in [16, 32, 64, 128]:
for samples in [1000, 10000, 100000]:
# Load
optimal = load_json('../best/multivariate/{0}_dims_{1}_samples/data.json'.format(dims, samples))
print('==========={0}-dims-{1}-samples==========='.format(dims, samples))
for idx, key in enumerate(model_names):
print(plot_names[idx], end="", flush=True)
for metric in distance_metrics:
print(metric)
for dist in distributions:
print(' & ', optimal[key][dist][metric]['parameters'][:2], end="", flush=True)
print(" \\ \midrule ", end='')
print('\n')
print('\n\n\n\n')
def hyperparameter_robustness(dirname='../best/multivariate/'):
""" Find number of other settings within its confidence interval """
# Get filenames
dim_numsamples_names = [i for i in os.listdir('../hypertuning/multivariate/') if i != '.DS_Store']
lr_hdim_bsize_names = [i for i in os.listdir('../hypertuning/multivariate/' + dim_numsamples_names[0] + '/trial_1')
if '1024' in i]
# Dict for counting number of hyperparams within global min's confidence interval
robust = nested_pickle_dict()
for name in tqdm_notebook(dim_numsamples_names):
print('Loading {0}...'.format(name))
global_optimal = load_json(dirname + '{0}/data.json'.format(name))
# Initialize best dictionary
for t in lr_hdim_bsize_names:
optimal = nested_pickle_dict()
results = []
# Load in the results from each trial
for trial in range(1, 21):
path = '../hypertuning/multivariate/{0}/trial_{1}/{2}'.format(name, trial, t)
data = []
with open(path) as f:
for line in f:
data.append(json.loads(line))
results.append(data[0])
# Go through each one and append the results
for result in results:
for model, distributions in result.items():
for distribution, metrics in distributions.items():
for metric, values in metrics.items():
if metric in ["LR", "HDIM", 'GLoss', 'DLoss', "BSIZE", "Energy-Distance"]:
continue
else:
# If metric is seen for the first time, initialize it
if 'values' not in optimal[model][distribution][metric]:
optimal[model][distribution][metric]["values"] = []
# Otherwise, compare it the presently considered value
optimal[model][distribution][metric]["values"].append(values)
# Go through each one to count the number of hyperparameters with performances that fall
# into the best average minimum performance
for model, distributions in result.items():
for distribution, metrics in distributions.items():
for metric, values in metrics.items():
if metric in ["LR", "HDIM", 'GLoss', 'DLoss', "BSIZE", "Energy-Distance"]:
continue
else:
# Initialize
if metric not in robust[model][name][distribution]:
robust[model][name][distribution][metric] = 0
if 'total' not in robust[model]['all']:
robust[model]['all']['total'] = 0
if metric not in robust[model]['all']:
robust[model]['all'][metric] = 0
# Find global min compared to current data min
_, _, global_low, global_high = mean_confidence_interval(np.array(global_optimal[model][distribution][metric]['mean']))
data_mean, _, data_low, data_high = mean_confidence_interval(np.nanmin(np.array(optimal[model][distribution][metric]["values"]), axis=1))
# If it's within the global min confidence interval, increment
if global_low <= data_mean <= global_high:
robust[model][name][distribution][metric] += 1
robust[model]['all']['total'] += 1
robust[model]['all'][metric] += 1
# Print results
for i in robust.keys():
print(i)
for k in ['KL-Divergence','Jensen-Shannon', 'Wasserstein-Distance']:
if k == 'total':
continue
print(k, robust[i]['all'][k])
print('TOTAL:',robust[i]['all']['total'], (robust[i]['all']['total']/51840) * 100)
print('\n')
return robust
def get_empirical_divergences(output=False):
""" How the 'Expected' dashed lines were produced in Figures 1-6 """
print('Finding expected empirical divergences...')
expected = nested_pickle_dict()
for dist in tqdm_notebook(['normal', 'beta', 'gumbel', 'laplace', 'exponential', 'gamma']):
for dims in [16, 32, 64, 128]:
gen = Distribution(dist_type=dist, dim=dims)
for j in range(20):
A = gen.generate_samples(1024)
B = gen.generate_samples(1024)
results = compute_divergences(np.array(A), B)
for i in results.keys():
if dims not in expected[dist][i]:
expected[dist][i][dims] = []
expected[dist][i][dims].append(results[i])
for metric in ['KL-Divergence', 'Jensen-Shannon', 'Wasserstein-Distance']:
for dims in [16, 32, 64, 128]:
for dist in ['normal', 'beta', 'gumbel', 'laplace', 'exponential', 'gamma']:
expected[dist][metric][dims] = np.mean(expected[dist][metric][dims])
if output:
print(dist, metric, dims, np.mean(expected[dist][metric][dims]))
return expected
def mean_confidence_interval(data, axis=0, confidence=0.95):
""" Compute confidence intervals """
n = data.shape[axis]
mu, std = np.nanmean(data, axis=axis), scipy.stats.sem(data, axis=axis, nan_policy='omit')
h = np.ma.getdata(std) * scipy.stats.t.ppf((1 + confidence) / 2., n-1)
return mu, h, mu-h, mu+h
def is_outlier(points, thresh=3.5):
"""
Returns a boolean array with True if points are outliers and False
otherwise.
References:
----------
Boris Iglewicz and David Hoaglin (1993), "Volume 16: How to Detect and
Handle Outliers", The ASQC Basic References in Quality Control:
Statistical Techniques, Edward F. Mykytka, Ph.D., Editor.
"""
if len(points.shape) == 1:
points = points[:,None]
median = np.median(points, axis=0)
diff = np.sum((points - median)**2, axis=-1)
diff = np.sqrt(diff)
med_abs_deviation = np.median(diff)
modified_z_score = 0.6745 * diff / med_abs_deviation
return modified_z_score > thresh
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)