-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
142 lines (116 loc) · 4.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import sys, json, itertools, datetime
import matplotlib.pyplot as plt
import data
from utils import *
from models import w_gan, w_gp_gan, ns_gan, mm_gan, \
ls_gan, fisher_gan, ra_gan, info_gan, \
dra_gan, be_gan
from models.f_gan import forkl_gan, revkl_gan, tv_gan, \
js_gan, hellinger_gan, pearson_gan
plt.switch_backend('agg')
"""
Choose \n
(1) dataset: multivariate \n
(2) trials: 1, 5, 10, 20, etc. \n
(3) number of dimensions: 1, 10, 100, 1000, etc. \n
(4) number of epochs: 10, 100, 1000, etc. \n
(5) number of samples: 1000, 10,000, 100,000, etc. \n
e.g. \n
python main.py multivariate 2 3 2 2
"""
if __name__ == "__main__":
# Collect system args
data_type = sys.argv[1]
trials = int(sys.argv[2])
dimensions = int(sys.argv[3])
epochs = int(sys.argv[4])
samples = int(sys.argv[5])
data_info = '{0}_dims_{1}_samples'.format(dimensions, samples)
# Make output directories if they don't exist yet
for dir in ['hypertuning', 'graphs', 'best', "confidence_intervals"]:
dirname = dir + '/multivariate/'
if not os.path.exists(dirname):
os.makedirs(dirname)
# Set hyperparameters
hidden_dims = [
16,
32,
64,
128,
]
batch_sizes = [
# 128,
# 256,
# 512,
1024,
]
learning_rates = [
2e-1,
2e-2,
2e-3,
]
# Multivariate distributions
distributions = [
'normal',
'beta',
'exponential',
'gamma',
'gumbel',
'laplace',
]
# Distance metrics we will consider
distance_metrics = [
"KL-Divergence",
"Jensen-Shannon",
"Wasserstein-Distance",
]
# Specify models to test
models = {
"wgan": w_gan,
"wgpgan": w_gp_gan,
"nsgan": ns_gan,
"lsgan": ls_gan,
"mmgan": mm_gan,
"dragan": dra_gan,
"began": be_gan,
"ragan": ra_gan,
"infogan": info_gan,
"fishergan": fisher_gan,
"fgan_forward_kl": forkl_gan,
"fgan_reverse_kl": revkl_gan,
"fgan_jensen_shannon": js_gan,
"fgan_total_var": tv_gan,
"fgan_hellinger": hellinger_gan,
"fgan_pearson": pearson_gan}
start_time = datetime.datetime.now().strftime("%Y-%m-%d-%s")
out_dir = data_type + '/' + data_info + '/' + start_time
for trial in range(1, trials+1):
trial_path = 'hypertuning/' + out_dir + '/trial_{0}'.format(trial)
if not os.path.exists(trial_path):
os.makedirs(trial_path)
print('========= TRIAL {0} ========= \n{1}'.format(trial, trial_path))
for (lr, hdim, bsize) in itertools.product(*[learning_rates, hidden_dims, batch_sizes]):
# Modify learning rate by a factor of 0.5 for each step up in batch size, as per
# https://openreview.net/forum?id=B1Yy1BxCZ
# NOTE: this is not done in the paper; we only consider batch size 1024
hyperparam = (lr * min(batch_sizes)/bsize, hdim, bsize)
# Output path for the given hyperparameter setting
out_path = trial_path + '/results_{1}.json'.format(trial, "_".join([str(i) for i in hyperparam]))
# For logging
print('TRIAL: {0} | LR: {1} | HDIM: {2} | BSIZE: {3}' \
.format(trial, hyperparam[0], hdim, bsize))
# Train model, compute divergences, log everything
results = get_multivariate_results(models, distributions, dimensions,
epochs, samples, hyperparam)
# Write results to output file
with open(out_path, 'w') as outfile:
json.dump(results, outfile)
find_best = eval('get_best_performance_' + data_type)
results = find_best(data_type, start_time, data_info, trial)
# Output format is best/data_type/results_trial_time
best_path = 'best/' + out_dir
if not os.path.exists(best_path):
os.makedirs(best_path)
# Write out best results from the current trial
with open(best_path + '/trial_{1}.json'.format(data_type, trial), 'w') as outfile:
json.dump(results, outfile)