diff --git a/docs/src/examples/anderson-model.md b/docs/src/examples/anderson-model.md index b69a681..795e735 100644 --- a/docs/src/examples/anderson-model.md +++ b/docs/src/examples/anderson-model.md @@ -11,7 +11,7 @@ The following relations are used to define the functions equivalent to the spect $$ V_{1k} = V_{k} \sin \theta_k = \sqrt{\frac{1}{e^{\beta \epsilon_k}+1}} \\ - &V_{2k} = V_{k} \cos \theta_k = \sqrt{\frac{1}{e^{-\beta \epsilon_k}+1}}, + V_{2k} = V_{k} \cos \theta_k = \sqrt{\frac{1}{e^{-\beta \epsilon_k}+1}}, $$ where we choose the spectral function that characterizes the fermionic bath to be: $V_k= \sqrt{1-k^2}$, and we define the dispersion relation as: $e_k = k$, that is, a linear dispersion relation with propagation speed equal to $1$. This latter choice corresponds to a model of metals (gapless energy spectrum). We select a filled state as the initial state of the defect.