diff --git a/docs/dev/index.html b/docs/dev/index.html index 6aa1461..89b173a 100644 --- a/docs/dev/index.html +++ b/docs/dev/index.html @@ -1,2 +1,2 @@ -Developpers · MPSDynamics.jl

Developpers

Simulation Workflow

The flow chart will go here

How to Contribute

Contributions are welcome! Don't hesitate to contact us if you

  • found a bug;
  • have a suggestion on how to improve the code and/or documentation;
  • would like to get involved in writing code and/or documentation.

You can contact us by raising an issue on Github, or by writing to one of the developpers.

+Developpers · MPSDynamics.jl

Developpers

Simulation Workflow

The flow chart will go here

How to Contribute

Contributions are welcome! Don't hesitate to contact us if you

  • found a bug;
  • have a suggestion on how to improve the code and/or documentation;
  • would like to get involved in writing code and/or documentation.

You can contact us by raising an issue on Github, or by writing to one of the developpers.

diff --git a/docs/examples/puredephasing/index.html b/docs/examples/puredephasing/index.html index dc60e02..fd389c0 100644 --- a/docs/examples/puredephasing/index.html +++ b/docs/examples/puredephasing/index.html @@ -1,2 +1,2 @@ -Pure-Dephasing · MPSDynamics.jl
+Pure-Dephasing · MPSDynamics.jl
diff --git a/docs/examples/sbm/index.html b/docs/examples/sbm/index.html index e53c575..90c63a5 100644 --- a/docs/examples/sbm/index.html +++ b/docs/examples/sbm/index.html @@ -1,2 +1,2 @@ -The Spin-Boson Model · MPSDynamics.jl
+The Spin-Boson Model · MPSDynamics.jl
diff --git a/docs/index.html b/docs/index.html index b9318f8..1fdd6cf 100644 --- a/docs/index.html +++ b/docs/index.html @@ -8,4 +8,4 @@ author = {Dunnett, Angus and Lacroix, Thibaut and Le Dé, Brieuc and Riva, Angela}, year = {2021}, doi = {10.5281/zenodo.5106435}, -} +} diff --git a/docs/methods/index.html b/docs/methods/index.html index 6a9d370..58fb59a 100644 --- a/docs/methods/index.html +++ b/docs/methods/index.html @@ -1,5 +1,5 @@ -Methods · MPSDynamics.jl

List of all methods

MPSDynamics.OneSiteObservableMethod
OneSiteObservable(name,op,sites)

Computes the local expectation value of the one-site operator op on the specified sites. Used to define one-site observables that are obs and convobs parameters for the runsim function.

source
MPSDynamics.chaincoeffs_ohmicMethod
chaincoeffs_ohmic(N, α, s; ωc=1, soft=false)

Generate chain coefficients $[[ϵ_0,ϵ_1,...],[t_0,t_1,...],c_0]$ for an Harmonic bath at zero temperature with a power law spectral density given by:

soft cutoff: $J(ω) = 2παω_c (\frac{ω}{ω_c})^s \exp(-ω/ω_c)$

hard cutoff: $J(ω) = 2παω_c (\frac{ω}{ω_c})^s θ(ω-ω_c)$

The coefficients parameterise the chain Hamiltonian

$H = H_S + c_0 A_S⊗B_0+\sum_{i=0}^{N-1}t_i (b_{i+1}^\dagger b_i +h.c.) + \sum_{i=0}^{N} ϵ_ib_i^\dagger b_i$

which is unitarily equivalent (before the truncation to N sites) to

$H = H_S + A_S⊗\int_0^∞dω\sqrt{\frac{J(ω)}{π}}B_ω + \int_0^∞dωωb_ω^\dagger b_ω$

source
MPSDynamics.chainmpsMethod
chainmps(N::Int, site::Int, numex::Int)

Generate an MPS with numex excitations on site

The returned MPS will have bond-dimensions and physical dimensions numex+1

source
MPSDynamics.chainmpsMethod
chainmps(N::Int, sites::Vector{Int}, numex::Int)

Generate an MPS with numex excitations of an equal super-position over sites

The returned MPS will have bond-dimensions and physical dimensions numex+1

source
MPSDynamics.chainpropMethod
chainprop(t, cparams...)

Propagate an excitation placed initially on the first site of a tight-binding chain with parameters given by cparams for a time t and return occupation expectation for each site.

source
MPSDynamics.dynamapMethod
dynamap(ps1,ps2,ps3,ps4)

Calulate complete dynamical map to time step at which ps1, ps2, ps3 and ps4 are specified.

source
MPSDynamics.electron2kmpsFunction
electronkmps(N::Int, k::Vector{Int}, spin=:Up, chainparams=[fill(1.0,N), fill(1.0,N-1)])

Generate an MPS with 2 electrons in k-states k1 and k2.

source
MPSDynamics.electronkmpsFunction
electronkmps(N::Int, k::Int, spin=:Up, chainparams=[fill(1.0,N), fill(1.0,N-1)])

Generate an MPS for an electron with momentum k.

source
MPSDynamics.elementmpsMethod
elementmps(A, el...)

Return the element of the MPS A for the set of physical states el...

Examples

julia> A = chainmps(6, [2,4], 1);
+Methods · MPSDynamics.jl

List of all methods

MPSDynamics.OneSiteObservableMethod
OneSiteObservable(name,op,sites)

Computes the local expectation value of the one-site operator op on the specified sites. Used to define one-site observables that are obs and convobs parameters for the runsim function.

source
MPSDynamics.chaincoeffs_ohmicMethod
chaincoeffs_ohmic(N, α, s; ωc=1, soft=false)

Generate chain coefficients $[[ϵ_0,ϵ_1,...],[t_0,t_1,...],c_0]$ for an Harmonic bath at zero temperature with a power law spectral density given by:

soft cutoff: $J(ω) = 2παω_c (\frac{ω}{ω_c})^s \exp(-ω/ω_c)$

hard cutoff: $J(ω) = 2παω_c (\frac{ω}{ω_c})^s θ(ω-ω_c)$

The coefficients parameterise the chain Hamiltonian

$H = H_S + c_0 A_S⊗B_0+\sum_{i=0}^{N-1}t_i (b_{i+1}^\dagger b_i +h.c.) + \sum_{i=0}^{N} ϵ_ib_i^\dagger b_i$

which is unitarily equivalent (before the truncation to N sites) to

$H = H_S + A_S⊗\int_0^∞dω\sqrt{\frac{J(ω)}{π}}B_ω + \int_0^∞dωωb_ω^\dagger b_ω$

source
MPSDynamics.chainmpsMethod
chainmps(N::Int, site::Int, numex::Int)

Generate an MPS with numex excitations on site

The returned MPS will have bond-dimensions and physical dimensions numex+1

source
MPSDynamics.chainmpsMethod
chainmps(N::Int, sites::Vector{Int}, numex::Int)

Generate an MPS with numex excitations of an equal super-position over sites

The returned MPS will have bond-dimensions and physical dimensions numex+1

source
MPSDynamics.chainpropMethod
chainprop(t, cparams...)

Propagate an excitation placed initially on the first site of a tight-binding chain with parameters given by cparams for a time t and return occupation expectation for each site.

source
MPSDynamics.dynamapMethod
dynamap(ps1,ps2,ps3,ps4)

Calulate complete dynamical map to time step at which ps1, ps2, ps3 and ps4 are specified.

source
MPSDynamics.electron2kmpsFunction
electronkmps(N::Int, k::Vector{Int}, spin=:Up, chainparams=[fill(1.0,N), fill(1.0,N-1)])

Generate an MPS with 2 electrons in k-states k1 and k2.

source
MPSDynamics.electronkmpsFunction
electronkmps(N::Int, k::Int, spin=:Up, chainparams=[fill(1.0,N), fill(1.0,N-1)])

Generate an MPS for an electron with momentum k.

source
MPSDynamics.elementmpsMethod
elementmps(A, el...)

Return the element of the MPS A for the set of physical states el...

Examples

julia> A = chainmps(6, [2,4], 1);
 
 julia> elementmps(A, 1, 2, 1, 1, 1, 1)
 0.7071067811865475
@@ -11,14 +11,14 @@
 0.0
 
 julia> elementmps(A, 1, 1, 1, 1, 1, 1)
-0.0
source
MPSDynamics.entanglemententropyMethod
entanglemententropy(A)

For a list of tensors A representing a right orthonormalized MPS, compute the entanglement entropy for a bipartite cut for every bond.

source
MPSDynamics.findchainlengthMethod
findchainlength(T, cparams...; eps=10^-6)

Estimate length of chain required for a particular set of chain parameters by calulating how long an excitation on the first site takes to reach the end. The chain length is given as the length required for the excitation to have just reached the last site after time T.

source
MPSDynamics.findchildMethod
findchild(node::TreeNode, id::Int)

Return integer corresponding to the which number child site id is of node.

source
MPSDynamics.hbathchainMethod
hbathchain(N::Int, d::Int, chainparams, longrangecc...; tree=false, reverse=false, coupletox=false)

Create an MPO representing a tight-binding chain of N oscillators with d Fock states each. Chain parameters are supplied in the standard form: chainparams $=[[ϵ_0,ϵ_1,...],[t_0,t_1,...],c_0]$. The output does not itself represent a complete MPO but will possess an end which is open and should be attached to another tensor site, usually representing the system.

Arguments

  • reverse: If reverse=true create a chain were the last (i.e. Nth) site is the site which couples to the system
  • coupletox: Used to choose the form of the system coupling. coupletox=true gives a non-number conserving coupling of the form $H_{\text{I}}= A_{\text{S}}(b_{0}^\dagger + b_0)$ where $A_{\text{S}}$ is a system operator, while coupletox=false gives the number-converving coupling $H_{\text{I}}=(A_{\text{S}} b_{0}^\dagger + A_{\text{S}}^\dagger b_0)$
  • tree: If true the resulting chain will be of type TreeNetwork; useful for construcing tree-MPOs

Example

One can constuct a system site tensor to couple to a chain by using the function up to populate the tensor. For example, to construct a system site with Hamiltonian Hs and coupling operator As, the system tensor M is constructed as follows for a non-number conserving interaction:

u = one(Hs) # system identity
+0.0
source
MPSDynamics.entanglemententropyMethod
entanglemententropy(A)

For a list of tensors A representing a right orthonormalized MPS, compute the entanglement entropy for a bipartite cut for every bond.

source
MPSDynamics.findchainlengthMethod
findchainlength(T, cparams...; eps=10^-6)

Estimate length of chain required for a particular set of chain parameters by calulating how long an excitation on the first site takes to reach the end. The chain length is given as the length required for the excitation to have just reached the last site after time T.

source
MPSDynamics.findchildMethod
findchild(node::TreeNode, id::Int)

Return integer corresponding to the which number child site id is of node.

source
MPSDynamics.hbathchainMethod
hbathchain(N::Int, d::Int, chainparams, longrangecc...; tree=false, reverse=false, coupletox=false)

Create an MPO representing a tight-binding chain of N oscillators with d Fock states each. Chain parameters are supplied in the standard form: chainparams $=[[ϵ_0,ϵ_1,...],[t_0,t_1,...],c_0]$. The output does not itself represent a complete MPO but will possess an end which is open and should be attached to another tensor site, usually representing the system.

Arguments

  • reverse: If reverse=true create a chain were the last (i.e. Nth) site is the site which couples to the system
  • coupletox: Used to choose the form of the system coupling. coupletox=true gives a non-number conserving coupling of the form $H_{\text{I}}= A_{\text{S}}(b_{0}^\dagger + b_0)$ where $A_{\text{S}}$ is a system operator, while coupletox=false gives the number-converving coupling $H_{\text{I}}=(A_{\text{S}} b_{0}^\dagger + A_{\text{S}}^\dagger b_0)$
  • tree: If true the resulting chain will be of type TreeNetwork; useful for construcing tree-MPOs

Example

One can constuct a system site tensor to couple to a chain by using the function up to populate the tensor. For example, to construct a system site with Hamiltonian Hs and coupling operator As, the system tensor M is constructed as follows for a non-number conserving interaction:

u = one(Hs) # system identity
 M = zeros(1,3,2,2)
 M[1, :, :, :] = up(Hs, As, u)

The full MPO can then be constructed with:

Hmpo = [M, hbathchain(N, d, chainparams, coupletox=true)...]

Similarly for a number conserving interaction the site tensor would look like:

u = one(Hs) # system identity
 M = zeros(1,4,2,2)
-M[1, :, :, :] = up(Hs, As, As', u)

And the full MPO would be

Hmpo = [M, hbathchain(N, d, chainparams; coupletox=false)...]
source
MPSDynamics.isingmpoMethod
isingmpo(N; J=1.0, h=1.0)

Return the MPO representation of a N-spin 1D Ising model with external field $\vec{h} = (0,0,h)$.

source
MPSDynamics.measure1siteoperatorMethod
measure1siteoperator(A::Vector, O, sites::Vector{Int})

For a list of tensors A representing a right orthonormalized MPS, compute the local expectation value of a one-site operator O for every site or just one if it is specified.

For calculating operators on single sites this will be more efficient if the site is on the left of the mps.

source
MPSDynamics.measure1siteoperatorMethod
measure1siteoperator(A::Vector, O)

For a list of tensors A representing a right orthonormalized MPS, compute the local expectation value of a one-site operator O for every site.

source
MPSDynamics.measure2siteoperatorMethod
 measure2siteoperator(A::Vector, M1, M2, j1, j2)

Caculate expectation of M1*M2 where M1 acts on site j1 and M2 acts on site j2, assumes A is right normalised.

source
MPSDynamics.modempsFunction
modemps(N::Int, k::Vector{Int}, numex::Int, chainparams=[fill(1.0,N), fill(1.0,N-1)])

Generate an MPS with numex excitations of an equal superposition of modes k of a bosonic tight-binding chain.

source
MPSDynamics.modempsFunction
modemps(N::Int, k::Int, numex::Int, chainparams=[fill(1.0,N), fill(1.0,N-1)])

Generate an MPS with numex excitations of mode k of a bosonic tight-binding chain.

chainparams takes the form [e::Vector, t::Vector] where e are the on-site energies and t are the hoppping parameters.

The returned MPS will have bond-dimensions and physical dimensions numex+1

source
MPSDynamics.mpsmoveoc!Method
mpsmoveoc!(A::TreeNetwork, id::Int)

Move the orthogonality centre of right normalised tree-MPS A to site id.

This function will be more efficient than using mpsmixednorm! if the tree-MPS is already right-normalised.

source
MPSDynamics.mpsshiftoc!Method
mpsshiftoc!(A::TreeNetwork, newhd::Int)

Shift the orthogonality centre by one site, setting new head-node newhd.

source
MPSDynamics.normmpsMethod
normmps(net::TreeNetwork; mpsorthog=:None)

When applied to a tree-MPS mpsorthog=:Left is not defined.

source
MPSDynamics.normmpsMethod
normmps(A::Vector; mpsorthog=:None)

Calculate norm of MPS A.

Setting mpsorthog=:Right/:Left will calculate the norm assuming right/left canonical form. Setting mpsorthog=OC::Int will cause the norm to be calculated assuming the orthoganility center is on site OC. If mpsorthog is :None the norm will be calculated as an MPS-MPS product.

source
MPSDynamics.orthcentersmpsMethod
orthcentersmps(A)

Compute the orthoganality centres of MPS A.

Return value is a list in which each element is the corresponding site tensor of A with the orthoganility centre on that site. Assumes A is right normalised.

source
MPSDynamics.productstatempsFunction
productstatemps(physdims::Dims, Dmax=1; state=:Vacuum, mpsorthog=:Right)

Return an MPS representing a product state with local Hilbert space dimensions given by physdims.

By default all bond-dimensions will be 1 since the state is a product state. However, to embed the product state in a manifold of greater bond-dimension, Dmax can be set accordingly.

The indvidual states of the MPS sites can be provided by setting state to a list of column vectors. Setting state=:Vacuum will produce an MPS in the vacuum state (where the state of each site is represented by a column vector with a 1 in the first row and zeros elsewhere). Setting state=:FullOccupy will produce an MPS in which each site is fully occupied (ie. a column vector with a 1 in the last row and zeros elsewhere).

The argument mpsorthog can be used to set the gauge of the resulting MPS.

Example

julia> ψ = unitcol(1,2); d = 6; N = 30; α = 0.1; Δ = 0.0; ω0 = 0.2; s = 1
+M[1, :, :, :] = up(Hs, As, As', u)

And the full MPO would be

Hmpo = [M, hbathchain(N, d, chainparams; coupletox=false)...]
source
MPSDynamics.isingmpoMethod
isingmpo(N; J=1.0, h=1.0)

Return the MPO representation of a N-spin 1D Ising model with external field $\vec{h} = (0,0,h)$.

source
MPSDynamics.measure1siteoperatorMethod
measure1siteoperator(A::Vector, O, sites::Vector{Int})

For a list of tensors A representing a right orthonormalized MPS, compute the local expectation value of a one-site operator O for every site or just one if it is specified.

For calculating operators on single sites this will be more efficient if the site is on the left of the mps.

source
MPSDynamics.measure1siteoperatorMethod
measure1siteoperator(A::Vector, O)

For a list of tensors A representing a right orthonormalized MPS, compute the local expectation value of a one-site operator O for every site.

source
MPSDynamics.measure2siteoperatorMethod
 measure2siteoperator(A::Vector, M1, M2, j1, j2)

Caculate expectation of M1*M2 where M1 acts on site j1 and M2 acts on site j2, assumes A is right normalised.

source
MPSDynamics.modempsFunction
modemps(N::Int, k::Vector{Int}, numex::Int, chainparams=[fill(1.0,N), fill(1.0,N-1)])

Generate an MPS with numex excitations of an equal superposition of modes k of a bosonic tight-binding chain.

source
MPSDynamics.modempsFunction
modemps(N::Int, k::Int, numex::Int, chainparams=[fill(1.0,N), fill(1.0,N-1)])

Generate an MPS with numex excitations of mode k of a bosonic tight-binding chain.

chainparams takes the form [e::Vector, t::Vector] where e are the on-site energies and t are the hoppping parameters.

The returned MPS will have bond-dimensions and physical dimensions numex+1

source
MPSDynamics.mpsmoveoc!Method
mpsmoveoc!(A::TreeNetwork, id::Int)

Move the orthogonality centre of right normalised tree-MPS A to site id.

This function will be more efficient than using mpsmixednorm! if the tree-MPS is already right-normalised.

source
MPSDynamics.mpsshiftoc!Method
mpsshiftoc!(A::TreeNetwork, newhd::Int)

Shift the orthogonality centre by one site, setting new head-node newhd.

source
MPSDynamics.normmpsMethod
normmps(net::TreeNetwork; mpsorthog=:None)

When applied to a tree-MPS mpsorthog=:Left is not defined.

source
MPSDynamics.normmpsMethod
normmps(A::Vector; mpsorthog=:None)

Calculate norm of MPS A.

Setting mpsorthog=:Right/:Left will calculate the norm assuming right/left canonical form. Setting mpsorthog=OC::Int will cause the norm to be calculated assuming the orthoganility center is on site OC. If mpsorthog is :None the norm will be calculated as an MPS-MPS product.

source
MPSDynamics.orthcentersmpsMethod
orthcentersmps(A)

Compute the orthoganality centres of MPS A.

Return value is a list in which each element is the corresponding site tensor of A with the orthoganility centre on that site. Assumes A is right normalised.

source
MPSDynamics.productstatempsFunction
productstatemps(physdims::Dims, Dmax=1; state=:Vacuum, mpsorthog=:Right)

Return an MPS representing a product state with local Hilbert space dimensions given by physdims.

By default all bond-dimensions will be 1 since the state is a product state. However, to embed the product state in a manifold of greater bond-dimension, Dmax can be set accordingly.

The indvidual states of the MPS sites can be provided by setting state to a list of column vectors. Setting state=:Vacuum will produce an MPS in the vacuum state (where the state of each site is represented by a column vector with a 1 in the first row and zeros elsewhere). Setting state=:FullOccupy will produce an MPS in which each site is fully occupied (ie. a column vector with a 1 in the last row and zeros elsewhere).

The argument mpsorthog can be used to set the gauge of the resulting MPS.

Example

julia> ψ = unitcol(1,2); d = 6; N = 30; α = 0.1; Δ = 0.0; ω0 = 0.2; s = 1
 
 julia> cpars = chaincoeffs_ohmic(N, α, s)
 
 julia> H = spinbosonmpo(ω0, Δ, d, N, cpars)
 
-julia> A = productstatemps(physdims(H), state=[ψ, fill(unitcol(1,d), N)...]) # MPS representation of |ψ>|Vacuum>
source
MPSDynamics.productstatempsFunction
productstatemps(N::Int, d::Int, Dmax=1; state=:Vacuum, mpsorthog=:Right)

Return an N-site MPS with all local Hilbert space dimensions given by d.

source
MPSDynamics.randmpsFunction
randmps(N::Int, d::Int, Dmax::Int, T=Float64)

Construct a random, N-site, right-normalised MPS with all local Hilbert space dimensions given by d.

source
MPSDynamics.randmpsFunction
randmps(tree::Tree, physdims, Dmax::Int, T::Type{<:Number} = Float64)

Construct a random, right-normalised, tree-MPS, with structure given by tree and max bond-dimension given by Dmax.

The local Hilbert space dimensions are specified by physdims which can either be of type Dims{length(tree)}, specifying the dimension of each site, or of type Int, in which case the same local dimension is used for every site.

source
MPSDynamics.randmpsMethod
randmps(physdims::Dims{N}, Dmax::Int, T::Type{<:Number} = Float64) where {N}

Construct a random, right-normalised MPS with local Hilbert space dimensions given by physdims and max bond-dimension given by Dmax.

T specifies the element type, eg. use T=ComplexF64 for a complex valued MPS.

source
MPSDynamics.randtreeMethod
randtree(numnodes::Int, maxdegree::Int)

Construct a random tree with nummodes modes and max degree maxdegree.

source
MPSDynamics.rmsdMethod
rmsd(dat1::Vector{Float64}, dat2::Vector{Float64})

Calculate the root mean squared difference between two measurements of an observable over the same time period.

source
MPSDynamics.spinbosonmpoMethod
spinbosonmpo(ω0, Δ, d, N, chainparams; rwa=false, tree=false)

Generate MPO for a spin-1/2 coupled to a chain of harmonic oscillators, defined by the Hamiltonian

$H = \frac{ω_0}{2}σ_z + Δσ_x + c_0σ_x(b_0^\dagger+b_0) + \sum_{i=0}^{N-1} t_i (b_{i+1}^\dagger b_i +h.c.) + \sum_{i=0}^{N} ϵ_ib_i^\dagger b_i$.

The spin is on site 1 of the MPS and the bath modes are to the right.

This Hamiltonain is unitarily equivalent (before the truncation to N sites) to the spin-boson Hamiltonian defined by

$H = \frac{ω_0}{2}σ_z + Δσ_x + σ_x\int_0^∞ dω\sqrt{\frac{J(ω)}{π}}(b_ω^\dagger+b_ω) + \int_0^∞ dω ωb_ω^\dagger b_ω$.

The chain parameters, supplied by chainparams=$[[ϵ_0,ϵ_1,...],[t_0,t_1,...],c_0]$, can be chosen to represent any arbitrary spectral density $J(ω)$ at any temperature.

The rotating wave approximation can be made by setting rwa=true.

source
MPSDynamics.svdmpsMethod
svdmps(A)

For a right normalised mps A compute the full svd spectrum for a bipartition at every bond.

source
MPSDynamics.svdtruncMethod
U, S, Vd = svdtrunc(A; truncdim = max(size(A)...), truncerr = 0.)

Perform a truncated SVD, with maximum number of singular values to keep equal to truncdim or truncating any singular values smaller than truncerr. If both options are provided, the smallest number of singular values will be kept. Unlike the SVD in Julia, this returns matrix U, a diagonal matrix (not a vector) S, and Vt such that A ≈ U * S * Vt

source
MPSDynamics.xyzmpoMethod
xyzmpo(N::Int; Jx=1.0, Jy=Jx, Jz=Jx, hx=0., hz=0.)

Return the MPO representation of the N-spin XYZ Hamiltonian with external field $\vec{h}=(h_x, 0, h_z)$.

$H = \sum_{n=1}^{N-1} -J_x σ_x^{n} σ_x^{n+1} - J_y σ_y^{n} σ_y^{n+1} - J_z σ_z^{n} σ_z^{n+1} + \sum_{n=1}^{N}(- h_x σ_x^{n} - h_z σ_z^{n})$.

source
+julia> A = productstatemps(physdims(H), state=[ψ, fill(unitcol(1,d), N)...]) # MPS representation of |ψ>|Vacuum>
source
MPSDynamics.productstatempsFunction
productstatemps(N::Int, d::Int, Dmax=1; state=:Vacuum, mpsorthog=:Right)

Return an N-site MPS with all local Hilbert space dimensions given by d.

source
MPSDynamics.randmpsFunction
randmps(tree::Tree, physdims, Dmax::Int, T::Type{<:Number} = Float64)

Construct a random, right-normalised, tree-MPS, with structure given by tree and max bond-dimension given by Dmax.

The local Hilbert space dimensions are specified by physdims which can either be of type Dims{length(tree)}, specifying the dimension of each site, or of type Int, in which case the same local dimension is used for every site.

source
MPSDynamics.randmpsFunction
randmps(N::Int, d::Int, Dmax::Int, T=Float64)

Construct a random, N-site, right-normalised MPS with all local Hilbert space dimensions given by d.

source
MPSDynamics.randmpsMethod
randmps(physdims::Dims{N}, Dmax::Int, T::Type{<:Number} = Float64) where {N}

Construct a random, right-normalised MPS with local Hilbert space dimensions given by physdims and max bond-dimension given by Dmax.

T specifies the element type, eg. use T=ComplexF64 for a complex valued MPS.

source
MPSDynamics.randtreeMethod
randtree(numnodes::Int, maxdegree::Int)

Construct a random tree with nummodes modes and max degree maxdegree.

source
MPSDynamics.rmsdMethod
rmsd(dat1::Vector{Float64}, dat2::Vector{Float64})

Calculate the root mean squared difference between two measurements of an observable over the same time period.

source
MPSDynamics.spinbosonmpoMethod
spinbosonmpo(ω0, Δ, d, N, chainparams; rwa=false, tree=false)

Generate MPO for a spin-1/2 coupled to a chain of harmonic oscillators, defined by the Hamiltonian

$H = \frac{ω_0}{2}σ_z + Δσ_x + c_0σ_x(b_0^\dagger+b_0) + \sum_{i=0}^{N-1} t_i (b_{i+1}^\dagger b_i +h.c.) + \sum_{i=0}^{N} ϵ_ib_i^\dagger b_i$.

The spin is on site 1 of the MPS and the bath modes are to the right.

This Hamiltonain is unitarily equivalent (before the truncation to N sites) to the spin-boson Hamiltonian defined by

$H = \frac{ω_0}{2}σ_z + Δσ_x + σ_x\int_0^∞ dω\sqrt{\frac{J(ω)}{π}}(b_ω^\dagger+b_ω) + \int_0^∞ dω ωb_ω^\dagger b_ω$.

The chain parameters, supplied by chainparams=$[[ϵ_0,ϵ_1,...],[t_0,t_1,...],c_0]$, can be chosen to represent any arbitrary spectral density $J(ω)$ at any temperature.

The rotating wave approximation can be made by setting rwa=true.

source
MPSDynamics.svdmpsMethod
svdmps(A)

For a right normalised mps A compute the full svd spectrum for a bipartition at every bond.

source
MPSDynamics.svdtruncMethod
U, S, Vd = svdtrunc(A; truncdim = max(size(A)...), truncerr = 0.)

Perform a truncated SVD, with maximum number of singular values to keep equal to truncdim or truncating any singular values smaller than truncerr. If both options are provided, the smallest number of singular values will be kept. Unlike the SVD in Julia, this returns matrix U, a diagonal matrix (not a vector) S, and Vt such that A ≈ U * S * Vt

source
MPSDynamics.xyzmpoMethod
xyzmpo(N::Int; Jx=1.0, Jy=Jx, Jz=Jx, hx=0., hz=0.)

Return the MPO representation of the N-spin XYZ Hamiltonian with external field $\vec{h}=(h_x, 0, h_z)$.

$H = \sum_{n=1}^{N-1} -J_x σ_x^{n} σ_x^{n+1} - J_y σ_y^{n} σ_y^{n+1} - J_z σ_z^{n} σ_z^{n+1} + \sum_{n=1}^{N}(- h_x σ_x^{n} - h_z σ_z^{n})$.

source
diff --git a/docs/search/index.html b/docs/search/index.html index aca953c..741c1af 100644 --- a/docs/search/index.html +++ b/docs/search/index.html @@ -1,2 +1,2 @@ -Search · MPSDynamics.jl

Loading search...

    +Search · MPSDynamics.jl

    Loading search...

      diff --git a/docs/search_index.js b/docs/search_index.js index 188b866..f180ba7 100644 --- a/docs/search_index.js +++ b/docs/search_index.js @@ -1,3 +1,3 @@ var documenterSearchIndex = {"docs": -[{"location":"dev/#Developpers","page":"Developpers","title":"Developpers","text":"","category":"section"},{"location":"dev/#Simulation-Workflow","page":"Developpers","title":"Simulation Workflow","text":"","category":"section"},{"location":"dev/","page":"Developpers","title":"Developpers","text":"The flow chart will go here","category":"page"},{"location":"dev/#How-to-Contribute","page":"Developpers","title":"How to Contribute","text":"","category":"section"},{"location":"dev/","page":"Developpers","title":"Developpers","text":"Contributions are welcome! Don't hesitate to contact us if you","category":"page"},{"location":"dev/","page":"Developpers","title":"Developpers","text":"found a bug;\nhave a suggestion on how to improve the code and/or documentation;\nwould like to get involved in writing code and/or documentation.","category":"page"},{"location":"dev/","page":"Developpers","title":"Developpers","text":"You can contact us by raising an issue on Github, or by writing to one of the developpers.","category":"page"},{"location":"theory/#Theoretical-Background","page":"Theoretical Background","title":"Theoretical Background","text":"","category":"section"},{"location":"theory/#Chain-Mapping-of-bosonic-environments","page":"Theoretical Background","title":"Chain-Mapping of bosonic environments","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"We consider, in the Schrödinger picture, a general Hamiltonian where a non-specified system interacts linearly with a bosonic environments","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" hatH = hatH_S + int_0^+infty hbaromegahata^dagger_omegahata_omega mathrmdomega + hatA_Sint_0^+inftysqrtJ(omega)left(hata_omega + hata^dagger_omegaright)mathrmdomega","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"where hata_omega (hata^dagger_omega) is a bosonic annihilation (creation) operator for a normal mode of the environment of energy hbaromega, hatA_S is a system operator, and J(omega) = sum_k g_k^2delta(omega - omega_k) is the bath spectral density (SD), defined with the microscopic system-environment coupling strength g_k. The SD quantifies the coupling strengths of the different normal modes of the environment with the system. Any SD that is not flat corresponds to a non-Markovian environment.","category":"page"},{"location":"theory/#Zero-Temperature","page":"Theoretical Background","title":"Zero Temperature","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Let us consider the Hamiltonian presented in Eq.(1). We can introduce a unitary transformation of the continuous normal modes hata_omega to an infinite discrete set of interacting modes hatb_n[chin_exact_2010].","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" hata_omega = sum_n=0^+infty U_n(omega)hatb_n = sum_n=0^+infty sqrtJ(omega)P_n(omega)hatb_n ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"where P_n(omega) are orthonormal polynomials such that","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" int_0^+inftyP_n(omega)P_m(omega)J(omega)mathrmdomega = delta_nm ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"and the inverse transformation is","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" hatb_n = int_0^+infty U_n(omega)hata_omegamathrmdomega ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Note that the orthonormality of the polynomials ensures the unitarity of the transformation defined in Eq.(2). The mapping from a continuous set of modes to a (still infinite) discrete set might seem counter-intuitive, however it is a direct consequence of the separability of the underlying Hilbert space.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Under this transformation, the Hamiltonian in Eq.(1) becomes","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" hatH= hatH_S + sum_n=0^+inftyvarepsilon_nhatb_n^daggerhatb_n + t_n(hatb_n+1^daggerhatb_n + mathrmhc) + kappahatA_S(hatb_0 + hatb_0^dagger) ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Hence, this mapping transforms the normal bath Hamiltonian into a tight-binding Hamiltonian with on-site energies varepsilon_n and hopping energies t_n. Another important consequence of this mapping is that now the system only interacts with the first mode n = 0 of the chain-mapped environment. The chain coefficients varepsilon_n, t_n, and the coupling kappa depend solely on the SD.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"This makes chain mapping a tool of choice for describing systems coupled to environment with highly structured SD (e.g. experimentally measured or calculated ab initio)[chin_role_2013][alvertis_nonequilibrium_2019][dunnett_influence_2021][caycedosoler_exact_2022]. In this new representation, the Hamiltonian in Eq.(5) has naturally a 1D chain topology. This makes its representation as a Matrix Product Operator (MPO) and the representation of the joint {System + Environment} wave-function as a Matrix Product State (MPS) suited [orus_practical_2014][paeckel_timeevolution_2019].","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The orthogonal polynomial-based chain mapping and the subsequent representation of the joint wave-function as a MPS (and the operators as MPO) are the building blocks of the Time-dependent Density operator with Orthonormal Polynomials Algorithm (TEDOPA) one of the state-of-the-art numerically exact method to simulate the dynamics of open quantum systems especially in the non-Markovian, non-perturbative regimes both at zero and finite temperatures [prior_efficient_2010][woods_simulating_2015][tamascelli_efficient_2019][dunnett_simulating_2021][lacroix_unveiling_2021].","category":"page"},{"location":"theory/#Finite-Temperature","page":"Theoretical Background","title":"Finite Temperature","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Explain that by extending the bath to negative frequencies and having temperature-dependent system environment couplings, it is possible to describe the finite temperature case as an effective zero temperature one. Hence, we can keep the pure state description and avoid moving to density matrices at the cost of doubling the size of the environment.","category":"page"},{"location":"theory/#Computation-of-the-chain-coefficients","page":"Theoretical Background","title":"Computation of the chain coefficients","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"A useful property of the orthonormal polynomials is that they obey a recurrence relation","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" P_n(omega) = (C_n-1omega - A_n-1)P_n-1(omega) + B_n-1P_n-2(omega) ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"where A_n is related to the first moment of P_n, B_n and C_n to the norms of P_n and P_n-1[appel_mathematics_2007]. This recurrence relation can be used to construct the polynomials with the conditions that P_0(omega) = p_0^-1 = left(int_mathbbR^+ J(omega)mathrmdomega right)^-frac12 and P_-1(omega) = 0, with bullet the norm of bullet with respect to the measure J(omega), and P_n(omega) = p_n(omega)p_n^-1 ; where the polynomials p_n_ninmathbbN are the so called monic polynomials where the factor a_n in front of omega^n is equal to 1.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The energy of the chain mode n is given by varepsilon_n = A_n C_n^-1 and t_n=C_n^-1 is the coupling between mode n and n+1[chin_exact_2010].","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The system couples only to the first mode with the coupling strength kappa = p_0.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Explain that for some weight function/SD they are known analytically and that for others we can use the build-in routines inspired by Gautschi or the PolyChaos.jl package.","category":"page"},{"location":"theory/#Tensor-Networks","page":"Theoretical Background","title":"Tensor Networks","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"A multipartite quantum state psirangle, e.g. a N-site system where the sites can each be in a state phi_irangle belonging to a d-dimensional Hilbert space, can be written as follows","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" psirangle = sum_i_kc_i_1ldots i_Nphi_i_1rangleotimesldotsotimesphi_i_Nrangle ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"where the complex numbers c_i_1ldots i_N are the amplitudes of each state phi_i_1rangleotimesldotsotimesphi_i_Nrangle whose superpositions form in full generality the state psirangle. Thus the state psirangle can be completely represented by a rank-N tensor c that is the collection of all possible amplitudes c_i_1ldots i_N. Here by the rank of a tensor, we simply mean the number of indices it has.","category":"page"},{"location":"theory/#MPS","page":"Theoretical Background","title":"MPS","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The tensor c of a quantum state psirangle corresponding to a one-dimensional system can be decomposed into a product of N smaller rank-3 tensors T_k (except for the first and last sites where the tensors will have a rank-2)","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" c_i_1ldots i_N = sum_alpha T^alpha_1_i_1T^alpha_1alpha_2 _i_2T^alpha_2alpha_3 _i_3ldots T^alpha_N-1_i_N ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"In this form, the local tensor T_k contains the information on the quantum state on site k and its relation (especially the entanglement) with the neighbouring sites.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The decomposition of the tensor of the amplitudes of a quantum state into a product of smaller rank tensors is called a Matrix Product State decomposition.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The contracted indices alpha_k between the tensors are called virtual indices and carry information about the correlations between bi-partitions of the state at bond k. The number of different values a virtual index can take is called the bond dimension and is denoted D. The free indices i_k associated with local quantum states are called physical indices. Thus, they can take d values (with d the dimension of the local Hilbert space).","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Any state in the Hilbert space of a one-dimensional many-body system can in principle be represented by a MPS by choosing a sufficiently large value for the bond dimension D \\cite{Orus}. On top of this intellectually satisfying property of MPSs being a dense set of states for a 1d-system, they can also be used as a practical Ansätze for a many-body quantum states by setting a maximal allowed value chi for the bond dimension D. In doing so, we restrict ourselves to a corner of the total Hilbert space. The rationale behind this Ansatz is the following: if the initial quantum state of a many-body system has a low bond dimension (typically if the initial state is a product state with D = 1), then in a finite time it will only be able to explore a region of the Hilbert space that is not to far away from its starting point. Thus, the bond dimension will not have the time to diverge exponentially \\cite{poulinquantum2011}. However, depending on the physical system at hand, this sub-manifold of the Hilbert space could still be \"too large\". There is an additional reason that explains why MPSs are good Ansätze for 1d physical systems. Most many-body Hamiltonians we (physicists) are interested in are local, meaning that the interactions they describe involve objects that are \"neighbours\". For such Hamiltonians, the ground states (outside of potential critical phases) follow the so called area law for the entanglement entropy.\\cite{srednickientropy1993, vidalentanglement2003, wolfarea2008}. This law states that the entanglement entropy S_vN of a bi-partition of the system is proportional, not to the volume of the partition as one might expect, but to the hyper-surface of the partition's boundary; hence the name \"area law\". For a 3d system this corresponds to an actual surface area A, S_vN sim A; for a 2d system it corresponds to the length L of the partition's boundary, S_vN sim L; and in 1d the boundary reduces to a point, thus the entropy will be independent of the size of the system S_vN sim textconstant. The MPSs are states that satisfy this area law.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"An application of the Singular Value Decomposition is to create efficient approximations of quantum states to perform computations. The main idea is to reduce the content of the MPS to keep only the parts that contain the physics of interest. One method to realise this approximation is to do a SVD on each of the tensors of the MPS after each time step of the state time-evolution and to trim the smallest singular values in order to decrease the bond dimension of the MPS down to a chosen maximal value chi. The corresponding columns and rows of the unitary matrices U and V^dagger are also removed. Then, the trimmed matrices tildeU, tildeS and tildeV^dagger are contracted back to give an approximated tensor T with a smaller bond dimension. Another way to apply the restricted rank approximation is to restrict oneself into working in a manifold of fixed bond dimension D and to use methods that can enforce this constraint.","category":"page"},{"location":"theory/#MPO","page":"Theoretical Background","title":"MPO","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"In order to compute expectation values of observables or apply unitary transformations to a quantum state, we need a TN representation of operators. In the same fashion as a one-dimensional quantum state can be represented as a MPS, operators acting on those states can be represented as Matrix Product Operators (MPO). For an operator hatO, its MPO can be defined as follows","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" hatO = sum_i_ki_k^ w W^i_1 i^_1_1 w_0w_1ldots W^i_N i^_N_N w_N-1w_N phi_i_1^ldots phi_i_N^ranglelanglephi_i_1ldots phi_i_N ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The contracted indices between the tensors are called virtual indices. The free indices are called physical indices and correspond to the different input and output local quantum states. They can take d values (with d the dimension of the local Hilbert space).","category":"page"},{"location":"theory/#TTN","page":"Theoretical Background","title":"TTN","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"A natural extension to the MPS is the (loop-free) tree tensor network. A TTN is a generalisation of the MPS wherein each site, instead of being connected to only one other site to its right, may be connected to any arbitrary number of child sites. Provided the tree does not contain any loops, everything that one can do to an MPS/MPO can be extended straight-forwardly to TTN states and TTN operators. The generalisation to trees introduces no new conceptual complexity (only implementational complexity). The sites of a TTN are usually referred to as nodes. For our purposes, every node of a TTN state and operator has one parent leg, and any number (including zero) of child legs. The first node is known as the head-node and has a dummy parent leg with dimension 1.","category":"page"},{"location":"theory/#Time-Dependent-Variational-Principal","page":"Theoretical Background","title":"Time-Dependent Variational Principal","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The original idea behind TDVP goes back to Dirac \\cite{diracnote1930} and Frenkel \\cite{frenkelwave1934}. The main point, in the modern tensor networks formulation, is that instead of solving the Schrödinger equation and then truncating the MPS representation of the quantum state, one can solve the equations of motion projected into a space of restricted bond dimension \\cite{haegemantime-dependent2011, haegemanunifying2016}.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The general formulation of the Dirac-Frenkel Variational Principle~\\cite{raabdiracfrenkelmclachlan2000} is that one looks for a solution varphirangle in mathcalM of the Schrödinger equation where mathcalM subset mathcalH is a manifold of the total Hilbert space mathcalH in which we think that the relevant physical states `live'.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"We define T_varphiranglemathcalM the tangent space of mathcalM around the state varphirangle. The criterion to find varphirangle is that for every state chirangle in T_varphiranglemathcalM","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" langlechileft(fracmathrmdmathrmdt - frac1mathrmihbarhatHright)varphirangle =0 ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"which can be interpreted as saying that the time evolution procedure should keep varphirangle inside of the manifold mathcalM.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The term variational in the name of the method comes from the fact that in practice one aims at minimising the right-hand side of Eq.~(\\ref{eq:DiracFrenkel1}) to find varphirangle.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Introducing hatP_T_varphiranglemathcalM the projector onto the tangent space T_varphiranglemathcalM, we can write the state chirangle = hatP_T_varphiranglemathcalMphirangle with phirangle a state in mathcalH. Leading to","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" forall phirangle in mathcalH langlephihatP_T_varphiranglemathcalMleft(fracmathrmdmathrmdt - frac1mathrmihbarhatHright)varphirangle =0 ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Because the time derivation and the projector commute, we have","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" forall phirangle in mathcalH langlephileft(fracmathrmdmathrmdt - frac1mathrmihbarhatP_T_varphiranglemathcalMhatHright)varphirangle =0 ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"This equation must be true for any phirangle in mathcalH, Eq.~(\\ref{eq:DiracFrenkel1}) can thus be written","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" left(fracmathrmdmathrmdt - frac1mathrmihbarhatP_T_varphiranglemathcalMhatHright)varphirangle =0 ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"In the context of MPS, the manifold mathcalM will correspond to the space of full-ranked MPS of a given bond dimension D, and the tangent space will be the space spanned by variations of single MPS tensors.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The major advantage of this method is that it naturally preserves the unitarity of the time evolution and conserves the energy.","category":"page"},{"location":"theory/#Bibliography","page":"Theoretical Background","title":"Bibliography","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[chin_exact_2010]: Chin, A. W.; Rivas, Á.; Huelga, S. F.; Plenio, M. B. Exact Mapping between System-Reservoir Quantum Models and Semi-Infinite Discrete Chains Using Orthogonal Polynomials. Journal of Mathematical Physics 2010, 51 (9), 092109. https://doi.org/10.1063/1.3490188.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[chin_role_2013]: Chin, A. W.; Prior, J.; Rosenbach, R.; Caycedo-Soler, F.; Huelga, S. F.; Plenio, M. B. The Role of Non-Equilibrium Vibrational Structures in Electronic Coherence and Recoherence in Pigment–Protein Complexes. Nature Phys 2013, 9 (2), 113–118. https://doi.org/10.1038/nphys2515.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[alvertis_nonequilibrium_2019]: Alvertis, A. M.; Schröder, F. A. Y. N.; Chin, A. W. Non-Equilibrium Relaxation of Hot States in Organic Semiconductors: Impact of Mode-Selective Excitation on Charge Transfer. J. Chem. Phys. 2019, 151 (8), 084104. https://doi.org/10.1063/1.5115239.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[dunnett_influence_2021]: Dunnett, A. J.; Gowland, D.; Isborn, C. M.; Chin, A. W.; Zuehlsdorff, T. J. Influence of Non-Adiabatic Effects on Linear Absorption Spectra in the Condensed Phase: Methylene Blue. J. Chem. Phys. 2021, 155 (14), 144112. https://doi.org/10.1063/5.0062950.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[caycedosoler_exact_2022]: Caycedo-Soler, F.; Mattioni, A.; Lim, J.; Renger, T.; Huelga, S. F.; Plenio, M. B. Exact Simulation of Pigment-Protein Complexes Unveils Vibronic Renormalization of Electronic Parameters in Ultrafast Spectroscopy. Nat Commun 2022, 13 (1), 2912. https://doi.org/10.1038/s41467-022-30565-4.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[orus_practical_2014]: Orus, R. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics 2014, 349, 117–158. https://doi.org/10.1016/j.aop.2014.06.013.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[paeckel_timeevolution_2019]: Paeckel, S.; Köhler, T.; Swoboda, A.; Manmana, S. R.; Schollwöck, U.; Hubig, C. Time-Evolution Methods for Matrix-Product States. Annals of Physics 2019, 411, 167998. https://doi.org/10.1016/j.aop.2019.167998.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[prior_efficient_2010]: Prior, J.; Chin, A. W.; Huelga, S. F.; Plenio, M. B. Efficient Simulation of Strong System-Environment Interactions. Phys. Rev. Lett. 2010, 105 (5), 050404. https://doi.org/10.1103/PhysRevLett.105.050404.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[woods_simulating_2015]: Woods, M. P.; Cramer, M.; Plenio, M. B. Simulating Bosonic Baths with Error Bars. Phys. Rev. Lett. 2015, 115 (13), 130401. https://doi.org/10.1103/PhysRevLett.115.130401.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[tamascelli_efficient_2019]: Tamascelli, D.; Smirne, A.; Lim, J.; Huelga, S. F.; Plenio, M. B. Efficient Simulation of Finite-Temperature Open Quantum Systems. Phys. Rev. Lett. 2019, 123 (9), 090402. https://doi.org/10.1103/PhysRevLett.123.090402.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[dunnett_simulating_2021]: Dunnett, A. J.; Chin, A. W. Simulating Quantum Vibronic Dynamics at Finite Temperatures With Many Body Wave Functions at 0 K. Front. Chem. 2021, 8. https://doi.org/10.3389/fchem.2020.600731.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[lacroix_unveiling_2021]: Lacroix, T.; Dunnett, A.; Gribben, D.; Lovett, B. W.; Chin, A. Unveiling Non-Markovian Spacetime Signaling in Open Quantum Systems with Long-Range Tensor Network Dynamics. Phys. Rev. A 2021, 104 (5), 052204. https://doi.org/10.1103/PhysRevA.104.052204.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[appel_mathematics_2007]: Appel, W. Mathematics for Physics and Physicists; Princeton University Press, 2007.","category":"page"},{"location":"user-guide/#Users-Guide","page":"Users Guide","title":"Users Guide","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Here we explain the different steps to perform a simulation.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Examples with detailed explanations can be found in .","category":"page"},{"location":"user-guide/#Initial-State","page":"Users Guide","title":"Initial State","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The initial many-body state of the {System + Environment} can be described easily as Matrix Product States (MPS) or Tree Tensor Networks (TTN) state (e.g. when a system is coupled to several environments).","category":"page"},{"location":"user-guide/#Matrix-Product-States","page":"Users Guide","title":"Matrix Product States","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"A MPS can be initialized with several methods.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The productstatemps method enables to instantiate arbitrary MPS of fixed uniform bond dimension with non-uniform physical dimensions. The individual states of the MPS sites can be provided by setting state to a list of column vectors. Setting state=:Vacuum will produce an MPS in the vacuum state. Setting state=:FullOccupy will produce an MPS in which each site is fully occupied. The gauge of the MPS can also be set using a keyword argument.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"julia> ψ = unitcol(1,2) # system initial state\n\njulia> d = 6; N = 30; α = 0.1; Δ = 0.0; ω0 = 0.2; s = 1 \n\njulia> cpars = chaincoeffs_ohmic(N, α, s) # chain coefficient for an Ohmic spectral density\n\njulia> H = spinbosonmpo(ω0, Δ, d, N, cpars)\n\njulia> A = productstatemps(physdims(H), state=[ψ, fill(unitcol(1,d), N)...]) # MPS representation of |ψ>|Vacuum>","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Alternatively, a chain with a specified number of excitation localised on one site, or delocalized accross several sites can be generated with MPSDynamics.chainmps.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Random MPS can also be generated with the randmps method.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"For the case of fermionic states (which need to be anti-symmetrized), the MPSDynamics.electronkmps method generate an MPS for an electron with momentum k, and the MPSDynamics.electron2kmps generate an MPS with 2 electrons in k-states k1 and k2.","category":"page"},{"location":"user-guide/#Tree-Tensor-Networks","page":"Users Guide","title":"Tree Tensor Networks","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Write a quick explanation of the how trees are structured: parents, child, nodes; and that most methods to initialize a MPS are overloaded for TreeNetwork. ","category":"page"},{"location":"user-guide/#Hamiltonian","page":"Users Guide","title":"Hamiltonian","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"In order to perform time evolution and have access to the dynamics of the many-body state a Hamiltonian needs to be specified in the form of a Matrix Product Operator (MPO) of as a tree tensor network. Either way, this can be done by using a Build-in Hamiltonian, Convert a MPO from ITensor, or creating a Tailored MPO.","category":"page"},{"location":"user-guide/#Build-in-Hamiltonian","page":"Users Guide","title":"Build-in Hamiltonian","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"MPSDynamics provides several topical Hamiltonians directly in the form of MPO or Tree Tensor Networks such as the Ising model MPSDynamics.isingmpo, the XYZ Hamiltonian MPSDynamics.xyzmpo, the Spin Boson Model MPSDynamics.spinbosonmpo, a spin coupled to two bosonic baths MPSDynamics.twobathspinmpo, nearest neighbour interactions Hamiltonian MPSDynamics.nearestneighbourmpo, the idependent boson model MPSDynamics.ibmmpo, (non-)uniform tight-binding chain Hamiltonian MPSDynamics.hbathchain.","category":"page"},{"location":"user-guide/#Convert-a-MPO-from-ITensor","page":"Users Guide","title":"Convert a MPO from ITensor","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The method MPSDynamics.MPOtoVector converts an ITensors chain MPO into a form compatible with MPSDynamics.","category":"page"},{"location":"user-guide/#Tailored-MPO","page":"Users Guide","title":"Tailored MPO","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Explain that a MPO is just a list of tensors with matching bond dimensions.","category":"page"},{"location":"user-guide/#Observables","page":"Users Guide","title":"Observables","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"System and environment observables can be computed, as well as system-and-environment non-local observables.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Explain OneSiteObservable and TwoSiteObservable","category":"page"},{"location":"user-guide/#Time-Evolution","page":"Users Guide","title":"Time-Evolution","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Explain that we do TDVP","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Local one-site and two-site observables, as well as non-local two-site observables, can be efficiently computed for each time-step of the time-evolution.","category":"page"},{"location":"user-guide/#One-site-TDVP","page":"Users Guide","title":"One-site TDVP","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Fixed bond dimension, complexity XXX, preserves unitarity.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The convergence parameter is the bond dimension.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Is set in MPSDynamics.runsim(@ref) usind the key word argument method=:TDVP1","category":"page"},{"location":"user-guide/#Two-Site-TDVP","page":"Users Guide","title":"Two-Site TDVP","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Varying bond dimension, complexity higher than 1TDVP, but breaks unitarity because of a SVD.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The convergence parameter is the threshold of the SVD.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Is set in MPSDynamics.runsim(@ref) usind the key word argument method=:TDVP2","category":"page"},{"location":"user-guide/#Adaptive-One-Site-TDVP","page":"Users Guide","title":"Adaptive One-Site TDVP","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Keeps the good scaling of the 1TDVP, preserves unitarity but is able to increase the bond dimendion.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The convergence parameter is a threshold value for the rate of change of the projection error with respect to the bond dimension.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Is set in MPSDynamics.runsim(@ref) usind the key word argument method=:DTDVP","category":"page"},{"location":"user-guide/#Data-Storage","page":"Users Guide","title":"Data Storage","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The data (i.e. observables time-series) is stored in the JLD format which is based on HDF5.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The HDF5 format is natively supported across many platforms and languages (e.g. Python, or Mathematica).","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"For the data to be saved to a file after a run, the keyword argument save=true needs to be used in runsim.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The directory where the data should be saved can be chosen by setting a path with the savedir keyword argument.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"A plot keyword argument can also be used to choose whether plots for 1D observables will be automatically generated and saved along with the data. ","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Loading the data in Julia using the JLD.jl package will recover the full type information of the Julia variables that were stored.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"julia> using JLD\n\njulia> dat = load(\"filename.jld\")\nDict{String, Any} with 2 entries:\n \"parameters\" => Dict{String, Any}(\"tmax\"=>0.2, \"method\"=>:DTDVP, \"dt\"=>0.0005…\n \"data\" => Dict{String, Any}(\"bonddims\"=>[1 1 … 1 1; 1 2 … 2 2; … ; 1 1 …","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"If the data is loaded in an variable dat the structure is the folowing:","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"the parameters entry contains a dictionary where all the simulation parameters are stored\nthe data entry contains a dictionary where are stored simulation time, the observables and (whenever relevent) the bond dimension of the state at each time steps. ","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"julia> dat[\"parameters\"]\nDict{String, Any} with 11 entries:\n \"tmax\" => 0.2\n \"method\" => :DTDVP\n \"dt\" => 0.0005\n \"name\" => \"my model\"\n \"Δ\" => 0.0\n \"β\" => 0.0186854\n \"N\" => 300.0\n \"d\" => 15.0\n \"unid\" => \"Ovzm6\"\n \"ω0\" => 0.0\n \"convparams\" => 0.0005\n\njulia> dat[\"data\"]\nDict{String, Any} with 6 entries:\n \"bonddims\" => [1 1 … 1 1; 1 2 … 2 2; … ; 1 1 … 7 7; 1 1 … 1 1]\n \"sx\" => [1.0, 0.912818, 0.741759, 0.605797, 0.528792, 0.492497, 0.47976…\n \"sz\" => [0.0, 0.0871825, 0.25824, 0.394201, 0.471207, 0.507503, 0.52023…\n \"nchain\" => [0.0 0.23466 … 1.84319 1.76098; 0.0 0.00231507 … 0.83105 0.9033…\n \"sy\" => [0.0, -0.0133489, -0.0588887, -0.0858181, -0.0759996, -0.048539…\n \"times\" => [0.0, 0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.00…\n","category":"page"},{"location":"examples/puredephasing/#Pure-Dephasing","page":"Pure-Dephasing","title":"Pure-Dephasing","text":"","category":"section"},{"location":"examples/puredephasing/#Zero-Temperature","page":"Pure-Dephasing","title":"Zero Temperature","text":"","category":"section"},{"location":"examples/puredephasing/#Finite-Temperature","page":"Pure-Dephasing","title":"Finite Temperature","text":"","category":"section"},{"location":"examples/sbm/#The-Spin-Boson-Model","page":"The Spin-Boson Model","title":"The Spin-Boson Model","text":"","category":"section"},{"location":"methods/#List-of-all-methods","page":"Methods","title":"List of all methods","text":"","category":"section"},{"location":"methods/","page":"Methods","title":"Methods","text":"Modules = [MPSDynamics]","category":"page"},{"location":"methods/#MPSDynamics.OneSiteObservable-Tuple{Any, Any, Any}","page":"Methods","title":"MPSDynamics.OneSiteObservable","text":"OneSiteObservable(name,op,sites)\n\nComputes the local expectation value of the one-site operator op on the specified sites. Used to define one-site observables that are obs and convobs parameters for the runsim function.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.MPOtoVector-Tuple{ITensors.MPO}","page":"Methods","title":"MPSDynamics.MPOtoVector","text":"MPOtoVector(mpo::MPO)\n\nConvert an ITensors chain MPO into a form compatible with MPSDynamics\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.addchild!-Tuple{MPSDynamics.Tree, Int64}","page":"Methods","title":"MPSDynamics.addchild!","text":"addchild!(tree::Tree, id::Int)\n\nAdd child to node id of tree.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.addchildren!-Tuple{MPSDynamics.Tree, Int64, Int64}","page":"Methods","title":"MPSDynamics.addchildren!","text":"addchildren!(tree::Tree, id::Int, n::Int)\n\nAdd n children to node id of tree.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.chaincoeffs_ohmic-Tuple{Any, Any, Any}","page":"Methods","title":"MPSDynamics.chaincoeffs_ohmic","text":"chaincoeffs_ohmic(N, α, s; ωc=1, soft=false)\n\nGenerate chain coefficients ϵ_0ϵ_1t_0t_1c_0 for an Harmonic bath at zero temperature with a power law spectral density given by:\n\nsoft cutoff: J(ω) = 2παω_c (fracωω_c)^s exp(-ωω_c) \n\nhard cutoff: J(ω) = 2παω_c (fracωω_c)^s θ(ω-ω_c)\n\nThe coefficients parameterise the chain Hamiltonian\n\nH = H_S + c_0 A_SB_0+sum_i=0^N-1t_i (b_i+1^dagger b_i +hc) + sum_i=0^N ϵ_ib_i^dagger b_i\n\nwhich is unitarily equivalent (before the truncation to N sites) to\n\nH = H_S + A_Sint_0^dωsqrtfracJ(ω)πB_ω + int_0^dωωb_ω^dagger b_ω\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.chainmps-Tuple{Int64, Int64, Int64}","page":"Methods","title":"MPSDynamics.chainmps","text":"chainmps(N::Int, site::Int, numex::Int)\n\nGenerate an MPS with numex excitations on site\n\nThe returned MPS will have bond-dimensions and physical dimensions numex+1\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.chainmps-Tuple{Int64, Vector{Int64}, Int64}","page":"Methods","title":"MPSDynamics.chainmps","text":"chainmps(N::Int, sites::Vector{Int}, numex::Int)\n\nGenerate an MPS with numex excitations of an equal super-position over sites\n\nThe returned MPS will have bond-dimensions and physical dimensions numex+1\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.chainprop-Tuple{Any, Any}","page":"Methods","title":"MPSDynamics.chainprop","text":"chainprop(t, cparams...)\n\nPropagate an excitation placed initially on the first site of a tight-binding chain with parameters given by cparams for a time t and return occupation expectation for each site.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.dynamap-NTuple{4, Any}","page":"Methods","title":"MPSDynamics.dynamap","text":"dynamap(ps1,ps2,ps3,ps4)\n\nCalulate complete dynamical map to time step at which ps1, ps2, ps3 and ps4 are specified.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.electron2kmps","page":"Methods","title":"MPSDynamics.electron2kmps","text":"electronkmps(N::Int, k::Vector{Int}, spin=:Up, chainparams=[fill(1.0,N), fill(1.0,N-1)])\n\nGenerate an MPS with 2 electrons in k-states k1 and k2.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.electronkmps","page":"Methods","title":"MPSDynamics.electronkmps","text":"electronkmps(N::Int, k::Int, spin=:Up, chainparams=[fill(1.0,N), fill(1.0,N-1)])\n\nGenerate an MPS for an electron with momentum k.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.elementmpo-Tuple{Any, Vararg{Any}}","page":"Methods","title":"MPSDynamics.elementmpo","text":"elementmpo(M, el...)\n\nReturn the element of the MPO M for the set of physical states el...\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.elementmps-Tuple{Any, Vararg{Any}}","page":"Methods","title":"MPSDynamics.elementmps","text":"elementmps(A, el...)\n\nReturn the element of the MPS A for the set of physical states el...\n\nExamples\n\njulia> A = chainmps(6, [2,4], 1);\n\njulia> elementmps(A, 1, 2, 1, 1, 1, 1)\n0.7071067811865475\n\njulia> elementmps(A, 1, 1, 1, 2, 1, 1)\n0.7071067811865475\n\njulia> elementmps(A, 1, 2, 1, 2, 1, 1)\n0.0\n\njulia> elementmps(A, 1, 1, 1, 1, 1, 1)\n0.0\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.entanglemententropy-Tuple{Any}","page":"Methods","title":"MPSDynamics.entanglemententropy","text":"entanglemententropy(A)\n\nFor a list of tensors A representing a right orthonormalized MPS, compute the entanglement entropy for a bipartite cut for every bond.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.findchainlength-Tuple{Any, Any}","page":"Methods","title":"MPSDynamics.findchainlength","text":"findchainlength(T, cparams...; eps=10^-6)\n\nEstimate length of chain required for a particular set of chain parameters by calulating how long an excitation on the first site takes to reach the end. The chain length is given as the length required for the excitation to have just reached the last site after time T.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.findchild-Tuple{MPSDynamics.TreeNode, Int64}","page":"Methods","title":"MPSDynamics.findchild","text":"findchild(node::TreeNode, id::Int)\n\nReturn integer corresponding to the which number child site id is of node.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.hbathchain-Tuple{Int64, Int64, Any, Vararg{Any}}","page":"Methods","title":"MPSDynamics.hbathchain","text":"hbathchain(N::Int, d::Int, chainparams, longrangecc...; tree=false, reverse=false, coupletox=false)\n\nCreate an MPO representing a tight-binding chain of N oscillators with d Fock states each. Chain parameters are supplied in the standard form: chainparams =ϵ_0ϵ_1t_0t_1c_0. The output does not itself represent a complete MPO but will possess an end which is open and should be attached to another tensor site, usually representing the system.\n\nArguments\n\nreverse: If reverse=true create a chain were the last (i.e. Nth) site is the site which couples to the system\ncoupletox: Used to choose the form of the system coupling. coupletox=true gives a non-number conserving coupling of the form H_textI= A_textS(b_0^dagger + b_0) where A_textS is a system operator, while coupletox=false gives the number-converving coupling H_textI=(A_textS b_0^dagger + A_textS^dagger b_0)\ntree: If true the resulting chain will be of type TreeNetwork; useful for construcing tree-MPOs \n\nExample\n\nOne can constuct a system site tensor to couple to a chain by using the function up to populate the tensor. For example, to construct a system site with Hamiltonian Hs and coupling operator As, the system tensor M is constructed as follows for a non-number conserving interaction:\n\nu = one(Hs) # system identity\nM = zeros(1,3,2,2)\nM[1, :, :, :] = up(Hs, As, u)\n\nThe full MPO can then be constructed with:\n\nHmpo = [M, hbathchain(N, d, chainparams, coupletox=true)...]\n\nSimilarly for a number conserving interaction the site tensor would look like:\n\nu = one(Hs) # system identity\nM = zeros(1,4,2,2)\nM[1, :, :, :] = up(Hs, As, As', u)\n\nAnd the full MPO would be\n\nHmpo = [M, hbathchain(N, d, chainparams; coupletox=false)...]\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.isingmpo-Tuple{Int64}","page":"Methods","title":"MPSDynamics.isingmpo","text":"isingmpo(N; J=1.0, h=1.0)\n\nReturn the MPO representation of a N-spin 1D Ising model with external field vech = (00h).\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.measure-Tuple{Any, OneSiteObservable}","page":"Methods","title":"MPSDynamics.measure","text":"measure(A, O; kwargs...)\n\nMeasure observable O on mps state A\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.measure1siteoperator-Tuple{Vector, Any, Vector{Int64}}","page":"Methods","title":"MPSDynamics.measure1siteoperator","text":"measure1siteoperator(A::Vector, O, sites::Vector{Int})\n\nFor a list of tensors A representing a right orthonormalized MPS, compute the local expectation value of a one-site operator O for every site or just one if it is specified.\n\nFor calculating operators on single sites this will be more efficient if the site is on the left of the mps.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.measure1siteoperator-Tuple{Vector, Any}","page":"Methods","title":"MPSDynamics.measure1siteoperator","text":"measure1siteoperator(A::Vector, O)\n\nFor a list of tensors A representing a right orthonormalized MPS, compute the local expectation value of a one-site operator O for every site.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.measure2siteoperator-Tuple{Vector, Any, Any, Int64, Int64}","page":"Methods","title":"MPSDynamics.measure2siteoperator","text":" measure2siteoperator(A::Vector, M1, M2, j1, j2)\n\nCaculate expectation of M1*M2 where M1 acts on site j1 and M2 acts on site j2, assumes A is right normalised.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.modemps","page":"Methods","title":"MPSDynamics.modemps","text":"modemps(N::Int, k::Vector{Int}, numex::Int, chainparams=[fill(1.0,N), fill(1.0,N-1)])\n\nGenerate an MPS with numex excitations of an equal superposition of modes k of a bosonic tight-binding chain.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.modemps-2","page":"Methods","title":"MPSDynamics.modemps","text":"modemps(N::Int, k::Int, numex::Int, chainparams=[fill(1.0,N), fill(1.0,N-1)])\n\nGenerate an MPS with numex excitations of mode k of a bosonic tight-binding chain. \n\nchainparams takes the form [e::Vector, t::Vector] where e are the on-site energies and t are the hoppping parameters.\n\nThe returned MPS will have bond-dimensions and physical dimensions numex+1\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.mpsembed!-Tuple{Vector, Int64}","page":"Methods","title":"MPSDynamics.mpsembed!","text":"mpsembed(A::Vector, Dmax::Int)\n\nEmbed MPS A in manifold of max bond-dimension Dmax\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.mpsleftnorm!","page":"Methods","title":"MPSDynamics.mpsleftnorm!","text":"mpsleftnorm!(A::Vector, jq::Int=length(A))\n\nLeft orthoganalise MPS A up to site jq.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.mpsmixednorm!-Tuple{MPSDynamics.TreeNetwork, Int64}","page":"Methods","title":"MPSDynamics.mpsmixednorm!","text":"mpsmixednorm!(A::TreeNetwork, id::Int)\n\nNormalise tree-MPS A such that orthogonality centre is on site id.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.mpsmixednorm!-Tuple{Vector, Int64}","page":"Methods","title":"MPSDynamics.mpsmixednorm!","text":"mpsmixednorm!(A::Vector, OC::Int)\n\nPut MPS A into mixed canonical form with orthogonality centre on site OC.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.mpsmoveoc!-Tuple{MPSDynamics.TreeNetwork, Int64}","page":"Methods","title":"MPSDynamics.mpsmoveoc!","text":"mpsmoveoc!(A::TreeNetwork, id::Int)\n\nMove the orthogonality centre of right normalised tree-MPS A to site id.\n\nThis function will be more efficient than using mpsmixednorm! if the tree-MPS is already right-normalised.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.mpsrightnorm!","page":"Methods","title":"MPSDynamics.mpsrightnorm!","text":"mpsrightnorm!(A::Vector, jq::Int=1)\n\nRight orthoganalise MPS A up to site jq.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.mpsrightnorm!-Tuple{MPSDynamics.TreeNetwork}","page":"Methods","title":"MPSDynamics.mpsrightnorm!","text":"mpsrightnorm!(A::TreeNetwork)\n\nWhen applied to a tree-MPS, right normalise towards head-node.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.mpsshiftoc!-Tuple{MPSDynamics.TreeNetwork, Int64}","page":"Methods","title":"MPSDynamics.mpsshiftoc!","text":"mpsshiftoc!(A::TreeNetwork, newhd::Int)\n\nShift the orthogonality centre by one site, setting new head-node newhd.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.normmps-Tuple{MPSDynamics.TreeNetwork}","page":"Methods","title":"MPSDynamics.normmps","text":"normmps(net::TreeNetwork; mpsorthog=:None)\n\nWhen applied to a tree-MPS mpsorthog=:Left is not defined.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.normmps-Tuple{Vector}","page":"Methods","title":"MPSDynamics.normmps","text":"normmps(A::Vector; mpsorthog=:None)\n\nCalculate norm of MPS A.\n\nSetting mpsorthog=:Right/:Left will calculate the norm assuming right/left canonical form. Setting mpsorthog=OC::Int will cause the norm to be calculated assuming the orthoganility center is on site OC. If mpsorthog is :None the norm will be calculated as an MPS-MPS product.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.orthcentersmps-Tuple{Vector}","page":"Methods","title":"MPSDynamics.orthcentersmps","text":"orthcentersmps(A)\n\nCompute the orthoganality centres of MPS A.\n\nReturn value is a list in which each element is the corresponding site tensor of A with the orthoganility centre on that site. Assumes A is right normalised.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.physdims-Tuple{Vector}","page":"Methods","title":"MPSDynamics.physdims","text":"physdims(M)\n\nReturn the physical dimensions of an MPS or MPO M.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.productstatemps","page":"Methods","title":"MPSDynamics.productstatemps","text":"productstatemps(physdims::Dims, Dmax=1; state=:Vacuum, mpsorthog=:Right)\n\nReturn an MPS representing a product state with local Hilbert space dimensions given by physdims.\n\nBy default all bond-dimensions will be 1 since the state is a product state. However, to embed the product state in a manifold of greater bond-dimension, Dmax can be set accordingly.\n\nThe indvidual states of the MPS sites can be provided by setting state to a list of column vectors. Setting state=:Vacuum will produce an MPS in the vacuum state (where the state of each site is represented by a column vector with a 1 in the first row and zeros elsewhere). Setting state=:FullOccupy will produce an MPS in which each site is fully occupied (ie. a column vector with a 1 in the last row and zeros elsewhere).\n\nThe argument mpsorthog can be used to set the gauge of the resulting MPS.\n\nExample\n\njulia> ψ = unitcol(1,2); d = 6; N = 30; α = 0.1; Δ = 0.0; ω0 = 0.2; s = 1\n\njulia> cpars = chaincoeffs_ohmic(N, α, s)\n\njulia> H = spinbosonmpo(ω0, Δ, d, N, cpars)\n\njulia> A = productstatemps(physdims(H), state=[ψ, fill(unitcol(1,d), N)...]) # MPS representation of |ψ>|Vacuum>\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.productstatemps-2","page":"Methods","title":"MPSDynamics.productstatemps","text":"productstatemps(N::Int, d::Int, Dmax=1; state=:Vacuum, mpsorthog=:Right)\n\nReturn an N-site MPS with all local Hilbert space dimensions given by d. \n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.randisometry-Tuple{Type, Int64, Int64}","page":"Methods","title":"MPSDynamics.randisometry","text":"randisometry([T=Float64], dims...)\n\nConstruct a random isometry\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.randmps","page":"Methods","title":"MPSDynamics.randmps","text":"randmps(N::Int, d::Int, Dmax::Int, T=Float64)\n\nConstruct a random, N-site, right-normalised MPS with all local Hilbert space dimensions given by d.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.randmps-2","page":"Methods","title":"MPSDynamics.randmps","text":"randmps(tree::Tree, physdims, Dmax::Int, T::Type{<:Number} = Float64)\n\nConstruct a random, right-normalised, tree-MPS, with structure given by tree and max bond-dimension given by Dmax.\n\nThe local Hilbert space dimensions are specified by physdims which can either be of type Dims{length(tree)}, specifying the dimension of each site, or of type Int, in which case the same local dimension is used for every site.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.randmps-Union{Tuple{N}, Tuple{Tuple{Vararg{Int64, N}}, Int64}, Tuple{Tuple{Vararg{Int64, N}}, Int64, Type{<:Number}}} where N","page":"Methods","title":"MPSDynamics.randmps","text":"randmps(physdims::Dims{N}, Dmax::Int, T::Type{<:Number} = Float64) where {N}\n\nConstruct a random, right-normalised MPS with local Hilbert space dimensions given by physdims and max bond-dimension given by Dmax. \n\nT specifies the element type, eg. use T=ComplexF64 for a complex valued MPS.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.randtree-Tuple{Int64, Int64}","page":"Methods","title":"MPSDynamics.randtree","text":"randtree(numnodes::Int, maxdegree::Int)\n\nConstruct a random tree with nummodes modes and max degree maxdegree.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.rmsd-Tuple{Any, Any}","page":"Methods","title":"MPSDynamics.rmsd","text":"rmsd(dat1::Vector{Float64}, dat2::Vector{Float64})\n\nCalculate the root mean squared difference between two measurements of an observable over the same time period.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.spinbosonmpo-NTuple{5, Any}","page":"Methods","title":"MPSDynamics.spinbosonmpo","text":"spinbosonmpo(ω0, Δ, d, N, chainparams; rwa=false, tree=false)\n\nGenerate MPO for a spin-1/2 coupled to a chain of harmonic oscillators, defined by the Hamiltonian\n\nH = fracω_02σ_z + Δσ_x + c_0σ_x(b_0^dagger+b_0) + sum_i=0^N-1 t_i (b_i+1^dagger b_i +hc) + sum_i=0^N ϵ_ib_i^dagger b_i.\n\nThe spin is on site 1 of the MPS and the bath modes are to the right.\n\nThis Hamiltonain is unitarily equivalent (before the truncation to N sites) to the spin-boson Hamiltonian defined by\n\nH = fracω_02σ_z + Δσ_x + σ_xint_0^ dωsqrtfracJ(ω)π(b_ω^dagger+b_ω) + int_0^ dω ωb_ω^dagger b_ω.\n\nThe chain parameters, supplied by chainparams=ϵ_0ϵ_1t_0t_1c_0, can be chosen to represent any arbitrary spectral density J(ω) at any temperature.\n\nThe rotating wave approximation can be made by setting rwa=true.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.svdmps-Tuple{Any}","page":"Methods","title":"MPSDynamics.svdmps","text":"svdmps(A)\n\nFor a right normalised mps A compute the full svd spectrum for a bipartition at every bond.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.svdtrunc-Tuple{Any}","page":"Methods","title":"MPSDynamics.svdtrunc","text":"U, S, Vd = svdtrunc(A; truncdim = max(size(A)...), truncerr = 0.)\n\nPerform a truncated SVD, with maximum number of singular values to keep equal to truncdim or truncating any singular values smaller than truncerr. If both options are provided, the smallest number of singular values will be kept. Unlike the SVD in Julia, this returns matrix U, a diagonal matrix (not a vector) S, and Vt such that A ≈ U * S * Vt\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.xyzmpo-Tuple{Int64}","page":"Methods","title":"MPSDynamics.xyzmpo","text":"xyzmpo(N::Int; Jx=1.0, Jy=Jx, Jz=Jx, hx=0., hz=0.)\n\nReturn the MPO representation of the N-spin XYZ Hamiltonian with external field vech=(h_x 0 h_z).\n\nH = sum_n=1^N-1 -J_x σ_x^n σ_x^n+1 - J_y σ_y^n σ_y^n+1 - J_z σ_z^n σ_z^n+1 + sum_n=1^N(- h_x σ_x^n - h_z σ_z^n).\n\n\n\n\n\n","category":"method"},{"location":"#Introduction","page":"Introduction","title":"Introduction","text":"","category":"section"},{"location":"","page":"Introduction","title":"Introduction","text":"The MPSDynamics.jl package provides an easy to use interface for performing tensor network simulations on matrix product states (MPS) and tree tensor network (TTN) states. Written in the Julia programming language, MPSDynamics.jl is a versatile open-source package providing a choice of several variants of the Time-Dependent Variational Principle (TDVP) method for time evolution. The package also provides strong support for the measurement of observables, as well as the storing and logging of data, which makes it a useful tool for the study of many-body physics. The package has been developed with the aim of studying non-Markovian open system dynamics at finite temperature using the state-of-the-art numerically exact Thermalized-Time Evolving Density operator with Orthonormal Polynomials Algorithm (T-TEDOPA) based on environment chain mapping. However the methods implemented can equally be applied to other areas of physics.","category":"page"},{"location":"","page":"Introduction","title":"Introduction","text":"warning: Warning\nThe documentation is currently undergoing massive restructurations/improvement. It's a work in progress until the next release scheduled for May, 2024.","category":"page"},{"location":"#Installation","page":"Introduction","title":"Installation","text":"","category":"section"},{"location":"","page":"Introduction","title":"Introduction","text":"The package may be installed by typing the following into a Julia REPL","category":"page"},{"location":"","page":"Introduction","title":"Introduction","text":" ] add https://github.com/shareloqs/MPSDynamics.git","category":"page"},{"location":"#Table-of-Contents","page":"Introduction","title":"Table of Contents","text":"","category":"section"},{"location":"","page":"Introduction","title":"Introduction","text":"Pages = [\"index.md\", \"user-guide.md\", \"./examples/sbm.md\", \"./examples/puredephasing.md\", \"theory.md\", \"methods.md\", \"dev.md\"]\nDepth = 3","category":"page"},{"location":"#Citation","page":"Introduction","title":"Citation","text":"","category":"section"},{"location":"","page":"Introduction","title":"Introduction","text":"If you use the package in your research, please consider citing it. You can add the Zenodo record to your BibTex file:","category":"page"},{"location":"","page":"Introduction","title":"Introduction","text":"@misc{mpsdynamics_zenodo2021,\n\ttitle = {shareloqs/{MPSDynamics}},\n\tshorttitle = {{MPSDynamics.jl}},\n\turl = {https://zenodo.org/record/5106435},\n\tabstract = {Tensor network simulations for finite temperature, open quantum system dynamics},\n\tpublisher = {Zenodo},\n\tauthor = {Dunnett, Angus and Lacroix, Thibaut and Le Dé, Brieuc and Riva, Angela},\n\tyear = {2021},\n\tdoi = {10.5281/zenodo.5106435},\n}","category":"page"}] +[{"location":"dev/#Developpers","page":"Developpers","title":"Developpers","text":"","category":"section"},{"location":"dev/#Simulation-Workflow","page":"Developpers","title":"Simulation Workflow","text":"","category":"section"},{"location":"dev/","page":"Developpers","title":"Developpers","text":"The flow chart will go here","category":"page"},{"location":"dev/#How-to-Contribute","page":"Developpers","title":"How to Contribute","text":"","category":"section"},{"location":"dev/","page":"Developpers","title":"Developpers","text":"Contributions are welcome! Don't hesitate to contact us if you","category":"page"},{"location":"dev/","page":"Developpers","title":"Developpers","text":"found a bug;\nhave a suggestion on how to improve the code and/or documentation;\nwould like to get involved in writing code and/or documentation.","category":"page"},{"location":"dev/","page":"Developpers","title":"Developpers","text":"You can contact us by raising an issue on Github, or by writing to one of the developpers.","category":"page"},{"location":"theory/#Theoretical-Background","page":"Theoretical Background","title":"Theoretical Background","text":"","category":"section"},{"location":"theory/#Chain-Mapping-of-bosonic-environments","page":"Theoretical Background","title":"Chain-Mapping of bosonic environments","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"We consider, in the Schrödinger picture, a general Hamiltonian where a non-specified system interacts linearly with a bosonic environments","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"beginalign\n hatH = hatH_S + int_0^+infty hbaromegahata^dagger_omegahata_omega mathrmdomega + hatA_Sint_0^+inftysqrtJ(omega)left(hata_omega + hata^dagger_omegaright)mathrmdomega\nendalign","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"where hata_omega (hata^dagger_omega) is a bosonic annihilation (creation) operator for a normal mode of the environment of energy hbaromega, hatA_S is a system operator, and J(omega) = sum_k g_k^2delta(omega - omega_k) is the bath spectral density (SD), defined with the microscopic system-environment coupling strength g_k. The SD quantifies the coupling strengths of the different normal modes of the environment with the system. Any SD that is not flat corresponds to a non-Markovian environment.","category":"page"},{"location":"theory/#Zero-Temperature","page":"Theoretical Background","title":"Zero Temperature","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Let us consider the Hamiltonian presented in Eq.(1). We can introduce a unitary transformation of the continuous normal modes hata_omega to an infinite discrete set of interacting modes hatb_n[chin_exact_2010].","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" hata_omega = sum_n=0^+infty U_n(omega)hatb_n = sum_n=0^+infty sqrtJ(omega)P_n(omega)hatb_n ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"where P_n(omega) are orthonormal polynomials such that","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" int_0^+inftyP_n(omega)P_m(omega)J(omega)mathrmdomega = delta_nm ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"and the inverse transformation is","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" hatb_n = int_0^+infty U_n(omega)hata_omegamathrmdomega ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Note that the orthonormality of the polynomials ensures the unitarity of the transformation defined in Eq.(2). The mapping from a continuous set of modes to a (still infinite) discrete set might seem counter-intuitive, however it is a direct consequence of the separability of the underlying Hilbert space.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Under this transformation, the Hamiltonian in Eq.(1) becomes","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" hatH= hatH_S + sum_n=0^+inftyvarepsilon_nhatb_n^daggerhatb_n + t_n(hatb_n+1^daggerhatb_n + mathrmhc) + kappahatA_S(hatb_0 + hatb_0^dagger) ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Hence, this mapping transforms the normal bath Hamiltonian into a tight-binding Hamiltonian with on-site energies varepsilon_n and hopping energies t_n. Another important consequence of this mapping is that now the system only interacts with the first mode n = 0 of the chain-mapped environment. The chain coefficients varepsilon_n, t_n, and the coupling kappa depend solely on the SD.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"This makes chain mapping a tool of choice for describing systems coupled to environment with highly structured SD (e.g. experimentally measured or calculated ab initio)[chin_role_2013][alvertis_nonequilibrium_2019][dunnett_influence_2021][caycedosoler_exact_2022]. In this new representation, the Hamiltonian in Eq.(5) has naturally a 1D chain topology. This makes its representation as a Matrix Product Operator (MPO) and the representation of the joint {System + Environment} wave-function as a Matrix Product State (MPS) suited [orus_practical_2014][paeckel_timeevolution_2019].","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The orthogonal polynomial-based chain mapping and the subsequent representation of the joint wave-function as a MPS (and the operators as MPO) are the building blocks of the Time-dependent Density operator with Orthonormal Polynomials Algorithm (TEDOPA) one of the state-of-the-art numerically exact method to simulate the dynamics of open quantum systems especially in the non-Markovian, non-perturbative regimes both at zero and finite temperatures [prior_efficient_2010][woods_simulating_2015][tamascelli_efficient_2019][dunnett_simulating_2021][lacroix_unveiling_2021].","category":"page"},{"location":"theory/#Finite-Temperature","page":"Theoretical Background","title":"Finite Temperature","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Explain that by extending the bath to negative frequencies and having temperature-dependent system environment couplings, it is possible to describe the finite temperature case as an effective zero temperature one. Hence, we can keep the pure state description and avoid moving to density matrices at the cost of doubling the size of the environment.","category":"page"},{"location":"theory/#Computation-of-the-chain-coefficients","page":"Theoretical Background","title":"Computation of the chain coefficients","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"A useful property of the orthonormal polynomials is that they obey a recurrence relation","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" P_n(omega) = (C_n-1omega - A_n-1)P_n-1(omega) + B_n-1P_n-2(omega) ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"where A_n is related to the first moment of P_n, B_n and C_n to the norms of P_n and P_n-1[appel_mathematics_2007]. This recurrence relation can be used to construct the polynomials with the conditions that P_0(omega) = p_0^-1 = left(int_mathbbR^+ J(omega)mathrmdomega right)^-frac12 and P_-1(omega) = 0, with bullet the norm of bullet with respect to the measure J(omega), and P_n(omega) = p_n(omega)p_n^-1 ; where the polynomials p_n_ninmathbbN are the so called monic polynomials where the factor a_n in front of omega^n is equal to 1.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The energy of the chain mode n is given by varepsilon_n = A_n C_n^-1 and t_n=C_n^-1 is the coupling between mode n and n+1[chin_exact_2010].","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The system couples only to the first mode with the coupling strength kappa = p_0.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Explain that for some weight function/SD they are known analytically and that for others we can use the build-in routines inspired by Gautschi or the PolyChaos.jl package.","category":"page"},{"location":"theory/#Tensor-Networks","page":"Theoretical Background","title":"Tensor Networks","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"A multipartite quantum state psirangle, e.g. a N-site system where the sites can each be in a state phi_irangle belonging to a d-dimensional Hilbert space, can be written as follows","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" psirangle = sum_i_kc_i_1ldots i_Nphi_i_1rangleotimesldotsotimesphi_i_Nrangle ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"where the complex numbers c_i_1ldots i_N are the amplitudes of each state phi_i_1rangleotimesldotsotimesphi_i_Nrangle whose superpositions form in full generality the state psirangle. Thus the state psirangle can be completely represented by a rank-N tensor c that is the collection of all possible amplitudes c_i_1ldots i_N. Here by the rank of a tensor, we simply mean the number of indices it has.","category":"page"},{"location":"theory/#MPS","page":"Theoretical Background","title":"MPS","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The tensor c of a quantum state psirangle corresponding to a one-dimensional system can be decomposed into a product of N smaller rank-3 tensors T_k (except for the first and last sites where the tensors will have a rank-2)","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" c_i_1ldots i_N = sum_alpha T^alpha_1_i_1T^alpha_1alpha_2 _i_2T^alpha_2alpha_3 _i_3ldots T^alpha_N-1_i_N ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"In this form, the local tensor T_k contains the information on the quantum state on site k and its relation (especially the entanglement) with the neighbouring sites.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The decomposition of the tensor of the amplitudes of a quantum state into a product of smaller rank tensors is called a Matrix Product State decomposition.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The contracted indices alpha_k between the tensors are called virtual indices and carry information about the correlations between bi-partitions of the state at bond k. The number of different values a virtual index can take is called the bond dimension and is denoted D. The free indices i_k associated with local quantum states are called physical indices. Thus, they can take d values (with d the dimension of the local Hilbert space).","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Any state in the Hilbert space of a one-dimensional many-body system can in principle be represented by a MPS by choosing a sufficiently large value for the bond dimension D \\cite{Orus}. On top of this intellectually satisfying property of MPSs being a dense set of states for a 1d-system, they can also be used as a practical Ansätze for a many-body quantum states by setting a maximal allowed value chi for the bond dimension D. In doing so, we restrict ourselves to a corner of the total Hilbert space. The rationale behind this Ansatz is the following: if the initial quantum state of a many-body system has a low bond dimension (typically if the initial state is a product state with D = 1), then in a finite time it will only be able to explore a region of the Hilbert space that is not to far away from its starting point. Thus, the bond dimension will not have the time to diverge exponentially \\cite{poulinquantum2011}. However, depending on the physical system at hand, this sub-manifold of the Hilbert space could still be \"too large\". There is an additional reason that explains why MPSs are good Ansätze for 1d physical systems. Most many-body Hamiltonians we (physicists) are interested in are local, meaning that the interactions they describe involve objects that are \"neighbours\". For such Hamiltonians, the ground states (outside of potential critical phases) follow the so called area law for the entanglement entropy.\\cite{srednickientropy1993, vidalentanglement2003, wolfarea2008}. This law states that the entanglement entropy S_vN of a bi-partition of the system is proportional, not to the volume of the partition as one might expect, but to the hyper-surface of the partition's boundary; hence the name \"area law\". For a 3d system this corresponds to an actual surface area A, S_vN sim A; for a 2d system it corresponds to the length L of the partition's boundary, S_vN sim L; and in 1d the boundary reduces to a point, thus the entropy will be independent of the size of the system S_vN sim textconstant. The MPSs are states that satisfy this area law.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"An application of the Singular Value Decomposition is to create efficient approximations of quantum states to perform computations. The main idea is to reduce the content of the MPS to keep only the parts that contain the physics of interest. One method to realise this approximation is to do a SVD on each of the tensors of the MPS after each time step of the state time-evolution and to trim the smallest singular values in order to decrease the bond dimension of the MPS down to a chosen maximal value chi. The corresponding columns and rows of the unitary matrices U and V^dagger are also removed. Then, the trimmed matrices tildeU, tildeS and tildeV^dagger are contracted back to give an approximated tensor T with a smaller bond dimension. Another way to apply the restricted rank approximation is to restrict oneself into working in a manifold of fixed bond dimension D and to use methods that can enforce this constraint.","category":"page"},{"location":"theory/#MPO","page":"Theoretical Background","title":"MPO","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"In order to compute expectation values of observables or apply unitary transformations to a quantum state, we need a TN representation of operators. In the same fashion as a one-dimensional quantum state can be represented as a MPS, operators acting on those states can be represented as Matrix Product Operators (MPO). For an operator hatO, its MPO can be defined as follows","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" hatO = sum_i_ki_k^ w W^i_1 i^_1_1 w_0w_1ldots W^i_N i^_N_N w_N-1w_N phi_i_1^ldots phi_i_N^ranglelanglephi_i_1ldots phi_i_N ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The contracted indices between the tensors are called virtual indices. The free indices are called physical indices and correspond to the different input and output local quantum states. They can take d values (with d the dimension of the local Hilbert space).","category":"page"},{"location":"theory/#TTN","page":"Theoretical Background","title":"TTN","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"A natural extension to the MPS is the (loop-free) tree tensor network. A TTN is a generalisation of the MPS wherein each site, instead of being connected to only one other site to its right, may be connected to any arbitrary number of child sites. Provided the tree does not contain any loops, everything that one can do to an MPS/MPO can be extended straight-forwardly to TTN states and TTN operators. The generalisation to trees introduces no new conceptual complexity (only implementational complexity). The sites of a TTN are usually referred to as nodes. For our purposes, every node of a TTN state and operator has one parent leg, and any number (including zero) of child legs. The first node is known as the head-node and has a dummy parent leg with dimension 1.","category":"page"},{"location":"theory/#Time-Dependent-Variational-Principal","page":"Theoretical Background","title":"Time-Dependent Variational Principal","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The original idea behind TDVP goes back to Dirac \\cite{diracnote1930} and Frenkel \\cite{frenkelwave1934}. The main point, in the modern tensor networks formulation, is that instead of solving the Schrödinger equation and then truncating the MPS representation of the quantum state, one can solve the equations of motion projected into a space of restricted bond dimension \\cite{haegemantime-dependent2011, haegemanunifying2016}.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The general formulation of the Dirac-Frenkel Variational Principle~\\cite{raabdiracfrenkelmclachlan2000} is that one looks for a solution varphirangle in mathcalM of the Schrödinger equation where mathcalM subset mathcalH is a manifold of the total Hilbert space mathcalH in which we think that the relevant physical states `live'.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"We define T_varphiranglemathcalM the tangent space of mathcalM around the state varphirangle. The criterion to find varphirangle is that for every state chirangle in T_varphiranglemathcalM","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" langlechileft(fracmathrmdmathrmdt - frac1mathrmihbarhatHright)varphirangle =0 ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"which can be interpreted as saying that the time evolution procedure should keep varphirangle inside of the manifold mathcalM.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The term variational in the name of the method comes from the fact that in practice one aims at minimising the right-hand side of Eq.~(\\ref{eq:DiracFrenkel1}) to find varphirangle.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Introducing hatP_T_varphiranglemathcalM the projector onto the tangent space T_varphiranglemathcalM, we can write the state chirangle = hatP_T_varphiranglemathcalMphirangle with phirangle a state in mathcalH. Leading to","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" forall phirangle in mathcalH langlephihatP_T_varphiranglemathcalMleft(fracmathrmdmathrmdt - frac1mathrmihbarhatHright)varphirangle =0 ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"Because the time derivation and the projector commute, we have","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" forall phirangle in mathcalH langlephileft(fracmathrmdmathrmdt - frac1mathrmihbarhatP_T_varphiranglemathcalMhatHright)varphirangle =0 ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"This equation must be true for any phirangle in mathcalH, Eq.~(\\ref{eq:DiracFrenkel1}) can thus be written","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":" left(fracmathrmdmathrmdt - frac1mathrmihbarhatP_T_varphiranglemathcalMhatHright)varphirangle =0 ","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"In the context of MPS, the manifold mathcalM will correspond to the space of full-ranked MPS of a given bond dimension D, and the tangent space will be the space spanned by variations of single MPS tensors.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"The major advantage of this method is that it naturally preserves the unitarity of the time evolution and conserves the energy.","category":"page"},{"location":"theory/#Bibliography","page":"Theoretical Background","title":"Bibliography","text":"","category":"section"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[chin_exact_2010]: Chin, A. W.; Rivas, Á.; Huelga, S. F.; Plenio, M. B. Exact Mapping between System-Reservoir Quantum Models and Semi-Infinite Discrete Chains Using Orthogonal Polynomials. Journal of Mathematical Physics 2010, 51 (9), 092109. https://doi.org/10.1063/1.3490188.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[chin_role_2013]: Chin, A. W.; Prior, J.; Rosenbach, R.; Caycedo-Soler, F.; Huelga, S. F.; Plenio, M. B. The Role of Non-Equilibrium Vibrational Structures in Electronic Coherence and Recoherence in Pigment–Protein Complexes. Nature Phys 2013, 9 (2), 113–118. https://doi.org/10.1038/nphys2515.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[alvertis_nonequilibrium_2019]: Alvertis, A. M.; Schröder, F. A. Y. N.; Chin, A. W. Non-Equilibrium Relaxation of Hot States in Organic Semiconductors: Impact of Mode-Selective Excitation on Charge Transfer. J. Chem. Phys. 2019, 151 (8), 084104. https://doi.org/10.1063/1.5115239.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[dunnett_influence_2021]: Dunnett, A. J.; Gowland, D.; Isborn, C. M.; Chin, A. W.; Zuehlsdorff, T. J. Influence of Non-Adiabatic Effects on Linear Absorption Spectra in the Condensed Phase: Methylene Blue. J. Chem. Phys. 2021, 155 (14), 144112. https://doi.org/10.1063/5.0062950.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[caycedosoler_exact_2022]: Caycedo-Soler, F.; Mattioni, A.; Lim, J.; Renger, T.; Huelga, S. F.; Plenio, M. B. Exact Simulation of Pigment-Protein Complexes Unveils Vibronic Renormalization of Electronic Parameters in Ultrafast Spectroscopy. Nat Commun 2022, 13 (1), 2912. https://doi.org/10.1038/s41467-022-30565-4.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[orus_practical_2014]: Orus, R. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics 2014, 349, 117–158. https://doi.org/10.1016/j.aop.2014.06.013.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[paeckel_timeevolution_2019]: Paeckel, S.; Köhler, T.; Swoboda, A.; Manmana, S. R.; Schollwöck, U.; Hubig, C. Time-Evolution Methods for Matrix-Product States. Annals of Physics 2019, 411, 167998. https://doi.org/10.1016/j.aop.2019.167998.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[prior_efficient_2010]: Prior, J.; Chin, A. W.; Huelga, S. F.; Plenio, M. B. Efficient Simulation of Strong System-Environment Interactions. Phys. Rev. Lett. 2010, 105 (5), 050404. https://doi.org/10.1103/PhysRevLett.105.050404.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[woods_simulating_2015]: Woods, M. P.; Cramer, M.; Plenio, M. B. Simulating Bosonic Baths with Error Bars. Phys. Rev. Lett. 2015, 115 (13), 130401. https://doi.org/10.1103/PhysRevLett.115.130401.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[tamascelli_efficient_2019]: Tamascelli, D.; Smirne, A.; Lim, J.; Huelga, S. F.; Plenio, M. B. Efficient Simulation of Finite-Temperature Open Quantum Systems. Phys. Rev. Lett. 2019, 123 (9), 090402. https://doi.org/10.1103/PhysRevLett.123.090402.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[dunnett_simulating_2021]: Dunnett, A. J.; Chin, A. W. Simulating Quantum Vibronic Dynamics at Finite Temperatures With Many Body Wave Functions at 0 K. Front. Chem. 2021, 8. https://doi.org/10.3389/fchem.2020.600731.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[lacroix_unveiling_2021]: Lacroix, T.; Dunnett, A.; Gribben, D.; Lovett, B. W.; Chin, A. Unveiling Non-Markovian Spacetime Signaling in Open Quantum Systems with Long-Range Tensor Network Dynamics. Phys. Rev. A 2021, 104 (5), 052204. https://doi.org/10.1103/PhysRevA.104.052204.","category":"page"},{"location":"theory/","page":"Theoretical Background","title":"Theoretical Background","text":"[appel_mathematics_2007]: Appel, W. Mathematics for Physics and Physicists; Princeton University Press, 2007.","category":"page"},{"location":"user-guide/#Users-Guide","page":"Users Guide","title":"Users Guide","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Here we explain the different steps to perform a simulation.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Examples with detailed explanations can be found in .","category":"page"},{"location":"user-guide/#Initial-State","page":"Users Guide","title":"Initial State","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The initial many-body state of the {System + Environment} can be described easily as Matrix Product States (MPS) or Tree Tensor Networks (TTN) state (e.g. when a system is coupled to several environments).","category":"page"},{"location":"user-guide/#Matrix-Product-States","page":"Users Guide","title":"Matrix Product States","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"A MPS can be initialized with several methods.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The productstatemps method enables to instantiate arbitrary MPS of fixed uniform bond dimension with non-uniform physical dimensions. The individual states of the MPS sites can be provided by setting state to a list of column vectors. Setting state=:Vacuum will produce an MPS in the vacuum state. Setting state=:FullOccupy will produce an MPS in which each site is fully occupied. The gauge of the MPS can also be set using a keyword argument.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"julia> ψ = unitcol(1,2) # system initial state\n\njulia> d = 6; N = 30; α = 0.1; Δ = 0.0; ω0 = 0.2; s = 1 \n\njulia> cpars = chaincoeffs_ohmic(N, α, s) # chain coefficient for an Ohmic spectral density\n\njulia> H = spinbosonmpo(ω0, Δ, d, N, cpars)\n\njulia> A = productstatemps(physdims(H), state=[ψ, fill(unitcol(1,d), N)...]) # MPS representation of |ψ>|Vacuum>","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Alternatively, a chain with a specified number of excitation localised on one site, or delocalized accross several sites can be generated with MPSDynamics.chainmps.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Random MPS can also be generated with the randmps method.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"For the case of fermionic states (which need to be anti-symmetrized), the MPSDynamics.electronkmps method generate an MPS for an electron with momentum k, and the MPSDynamics.electron2kmps generate an MPS with 2 electrons in k-states k1 and k2.","category":"page"},{"location":"user-guide/#Tree-Tensor-Networks","page":"Users Guide","title":"Tree Tensor Networks","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Write a quick explanation of the how trees are structured: parents, child, nodes; and that most methods to initialize a MPS are overloaded for TreeNetwork. ","category":"page"},{"location":"user-guide/#Hamiltonian","page":"Users Guide","title":"Hamiltonian","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"In order to perform time evolution and have access to the dynamics of the many-body state a Hamiltonian needs to be specified in the form of a Matrix Product Operator (MPO) of as a tree tensor network. Either way, this can be done by using a Build-in Hamiltonian, Convert a MPO from ITensor, or creating a Tailored MPO.","category":"page"},{"location":"user-guide/#Build-in-Hamiltonian","page":"Users Guide","title":"Build-in Hamiltonian","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"MPSDynamics provides several topical Hamiltonians directly in the form of MPO or Tree Tensor Networks such as the Ising model MPSDynamics.isingmpo, the XYZ Hamiltonian MPSDynamics.xyzmpo, the Spin Boson Model MPSDynamics.spinbosonmpo, a spin coupled to two bosonic baths MPSDynamics.twobathspinmpo, nearest neighbour interactions Hamiltonian MPSDynamics.nearestneighbourmpo, the idependent boson model MPSDynamics.ibmmpo, (non-)uniform tight-binding chain Hamiltonian MPSDynamics.hbathchain.","category":"page"},{"location":"user-guide/#Convert-a-MPO-from-ITensor","page":"Users Guide","title":"Convert a MPO from ITensor","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The method MPSDynamics.MPOtoVector converts an ITensors chain MPO into a form compatible with MPSDynamics.","category":"page"},{"location":"user-guide/#Tailored-MPO","page":"Users Guide","title":"Tailored MPO","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Explain that a MPO is just a list of tensors with matching bond dimensions.","category":"page"},{"location":"user-guide/#Observables","page":"Users Guide","title":"Observables","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"System and environment observables can be computed, as well as system-and-environment non-local observables.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Explain OneSiteObservable and TwoSiteObservable","category":"page"},{"location":"user-guide/#Time-Evolution","page":"Users Guide","title":"Time-Evolution","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Explain that we do TDVP","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Local one-site and two-site observables, as well as non-local two-site observables, can be efficiently computed for each time-step of the time-evolution.","category":"page"},{"location":"user-guide/#One-site-TDVP","page":"Users Guide","title":"One-site TDVP","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Fixed bond dimension, complexity XXX, preserves unitarity.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The convergence parameter is the bond dimension.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Is set in MPSDynamics.runsim(@ref) usind the key word argument method=:TDVP1","category":"page"},{"location":"user-guide/#Two-Site-TDVP","page":"Users Guide","title":"Two-Site TDVP","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Varying bond dimension, complexity higher than 1TDVP, but breaks unitarity because of a SVD.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The convergence parameter is the threshold of the SVD.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Is set in MPSDynamics.runsim(@ref) usind the key word argument method=:TDVP2","category":"page"},{"location":"user-guide/#Adaptive-One-Site-TDVP","page":"Users Guide","title":"Adaptive One-Site TDVP","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Keeps the good scaling of the 1TDVP, preserves unitarity but is able to increase the bond dimendion.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The convergence parameter is a threshold value for the rate of change of the projection error with respect to the bond dimension.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Is set in MPSDynamics.runsim(@ref) usind the key word argument method=:DTDVP","category":"page"},{"location":"user-guide/#Data-Storage","page":"Users Guide","title":"Data Storage","text":"","category":"section"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The data (i.e. observables time-series) is stored in the JLD format which is based on HDF5.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The HDF5 format is natively supported across many platforms and languages (e.g. Python, or Mathematica).","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"For the data to be saved to a file after a run, the keyword argument save=true needs to be used in runsim.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"The directory where the data should be saved can be chosen by setting a path with the savedir keyword argument.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"A plot keyword argument can also be used to choose whether plots for 1D observables will be automatically generated and saved along with the data. ","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"Loading the data in Julia using the JLD.jl package will recover the full type information of the Julia variables that were stored.","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"julia> using JLD\n\njulia> dat = load(\"filename.jld\")\nDict{String, Any} with 2 entries:\n \"parameters\" => Dict{String, Any}(\"tmax\"=>0.2, \"method\"=>:DTDVP, \"dt\"=>0.0005…\n \"data\" => Dict{String, Any}(\"bonddims\"=>[1 1 … 1 1; 1 2 … 2 2; … ; 1 1 …","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"If the data is loaded in an variable dat the structure is the folowing:","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"the parameters entry contains a dictionary where all the simulation parameters are stored\nthe data entry contains a dictionary where are stored simulation time, the observables and (whenever relevent) the bond dimension of the state at each time steps. ","category":"page"},{"location":"user-guide/","page":"Users Guide","title":"Users Guide","text":"julia> dat[\"parameters\"]\nDict{String, Any} with 11 entries:\n \"tmax\" => 0.2\n \"method\" => :DTDVP\n \"dt\" => 0.0005\n \"name\" => \"my model\"\n \"Δ\" => 0.0\n \"β\" => 0.0186854\n \"N\" => 300.0\n \"d\" => 15.0\n \"unid\" => \"Ovzm6\"\n \"ω0\" => 0.0\n \"convparams\" => 0.0005\n\njulia> dat[\"data\"]\nDict{String, Any} with 6 entries:\n \"bonddims\" => [1 1 … 1 1; 1 2 … 2 2; … ; 1 1 … 7 7; 1 1 … 1 1]\n \"sx\" => [1.0, 0.912818, 0.741759, 0.605797, 0.528792, 0.492497, 0.47976…\n \"sz\" => [0.0, 0.0871825, 0.25824, 0.394201, 0.471207, 0.507503, 0.52023…\n \"nchain\" => [0.0 0.23466 … 1.84319 1.76098; 0.0 0.00231507 … 0.83105 0.9033…\n \"sy\" => [0.0, -0.0133489, -0.0588887, -0.0858181, -0.0759996, -0.048539…\n \"times\" => [0.0, 0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.00…\n","category":"page"},{"location":"examples/puredephasing/#Pure-Dephasing","page":"Pure-Dephasing","title":"Pure-Dephasing","text":"","category":"section"},{"location":"examples/puredephasing/#Zero-Temperature","page":"Pure-Dephasing","title":"Zero Temperature","text":"","category":"section"},{"location":"examples/puredephasing/#Finite-Temperature","page":"Pure-Dephasing","title":"Finite Temperature","text":"","category":"section"},{"location":"examples/sbm/#The-Spin-Boson-Model","page":"The Spin-Boson Model","title":"The Spin-Boson Model","text":"","category":"section"},{"location":"methods/#List-of-all-methods","page":"Methods","title":"List of all methods","text":"","category":"section"},{"location":"methods/","page":"Methods","title":"Methods","text":"Modules = [MPSDynamics]","category":"page"},{"location":"methods/#MPSDynamics.OneSiteObservable-Tuple{Any, Any, Any}","page":"Methods","title":"MPSDynamics.OneSiteObservable","text":"OneSiteObservable(name,op,sites)\n\nComputes the local expectation value of the one-site operator op on the specified sites. Used to define one-site observables that are obs and convobs parameters for the runsim function.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.MPOtoVector-Tuple{ITensors.MPO}","page":"Methods","title":"MPSDynamics.MPOtoVector","text":"MPOtoVector(mpo::MPO)\n\nConvert an ITensors chain MPO into a form compatible with MPSDynamics\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.addchild!-Tuple{MPSDynamics.Tree, Int64}","page":"Methods","title":"MPSDynamics.addchild!","text":"addchild!(tree::Tree, id::Int)\n\nAdd child to node id of tree.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.addchildren!-Tuple{MPSDynamics.Tree, Int64, Int64}","page":"Methods","title":"MPSDynamics.addchildren!","text":"addchildren!(tree::Tree, id::Int, n::Int)\n\nAdd n children to node id of tree.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.chaincoeffs_ohmic-Tuple{Any, Any, Any}","page":"Methods","title":"MPSDynamics.chaincoeffs_ohmic","text":"chaincoeffs_ohmic(N, α, s; ωc=1, soft=false)\n\nGenerate chain coefficients ϵ_0ϵ_1t_0t_1c_0 for an Harmonic bath at zero temperature with a power law spectral density given by:\n\nsoft cutoff: J(ω) = 2παω_c (fracωω_c)^s exp(-ωω_c) \n\nhard cutoff: J(ω) = 2παω_c (fracωω_c)^s θ(ω-ω_c)\n\nThe coefficients parameterise the chain Hamiltonian\n\nH = H_S + c_0 A_SB_0+sum_i=0^N-1t_i (b_i+1^dagger b_i +hc) + sum_i=0^N ϵ_ib_i^dagger b_i\n\nwhich is unitarily equivalent (before the truncation to N sites) to\n\nH = H_S + A_Sint_0^dωsqrtfracJ(ω)πB_ω + int_0^dωωb_ω^dagger b_ω\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.chainmps-Tuple{Int64, Int64, Int64}","page":"Methods","title":"MPSDynamics.chainmps","text":"chainmps(N::Int, site::Int, numex::Int)\n\nGenerate an MPS with numex excitations on site\n\nThe returned MPS will have bond-dimensions and physical dimensions numex+1\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.chainmps-Tuple{Int64, Vector{Int64}, Int64}","page":"Methods","title":"MPSDynamics.chainmps","text":"chainmps(N::Int, sites::Vector{Int}, numex::Int)\n\nGenerate an MPS with numex excitations of an equal super-position over sites\n\nThe returned MPS will have bond-dimensions and physical dimensions numex+1\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.chainprop-Tuple{Any, Any}","page":"Methods","title":"MPSDynamics.chainprop","text":"chainprop(t, cparams...)\n\nPropagate an excitation placed initially on the first site of a tight-binding chain with parameters given by cparams for a time t and return occupation expectation for each site.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.dynamap-NTuple{4, Any}","page":"Methods","title":"MPSDynamics.dynamap","text":"dynamap(ps1,ps2,ps3,ps4)\n\nCalulate complete dynamical map to time step at which ps1, ps2, ps3 and ps4 are specified.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.electron2kmps","page":"Methods","title":"MPSDynamics.electron2kmps","text":"electronkmps(N::Int, k::Vector{Int}, spin=:Up, chainparams=[fill(1.0,N), fill(1.0,N-1)])\n\nGenerate an MPS with 2 electrons in k-states k1 and k2.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.electronkmps","page":"Methods","title":"MPSDynamics.electronkmps","text":"electronkmps(N::Int, k::Int, spin=:Up, chainparams=[fill(1.0,N), fill(1.0,N-1)])\n\nGenerate an MPS for an electron with momentum k.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.elementmpo-Tuple{Any, Vararg{Any}}","page":"Methods","title":"MPSDynamics.elementmpo","text":"elementmpo(M, el...)\n\nReturn the element of the MPO M for the set of physical states el...\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.elementmps-Tuple{Any, Vararg{Any}}","page":"Methods","title":"MPSDynamics.elementmps","text":"elementmps(A, el...)\n\nReturn the element of the MPS A for the set of physical states el...\n\nExamples\n\njulia> A = chainmps(6, [2,4], 1);\n\njulia> elementmps(A, 1, 2, 1, 1, 1, 1)\n0.7071067811865475\n\njulia> elementmps(A, 1, 1, 1, 2, 1, 1)\n0.7071067811865475\n\njulia> elementmps(A, 1, 2, 1, 2, 1, 1)\n0.0\n\njulia> elementmps(A, 1, 1, 1, 1, 1, 1)\n0.0\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.entanglemententropy-Tuple{Any}","page":"Methods","title":"MPSDynamics.entanglemententropy","text":"entanglemententropy(A)\n\nFor a list of tensors A representing a right orthonormalized MPS, compute the entanglement entropy for a bipartite cut for every bond.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.findchainlength-Tuple{Any, Any}","page":"Methods","title":"MPSDynamics.findchainlength","text":"findchainlength(T, cparams...; eps=10^-6)\n\nEstimate length of chain required for a particular set of chain parameters by calulating how long an excitation on the first site takes to reach the end. The chain length is given as the length required for the excitation to have just reached the last site after time T.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.findchild-Tuple{MPSDynamics.TreeNode, Int64}","page":"Methods","title":"MPSDynamics.findchild","text":"findchild(node::TreeNode, id::Int)\n\nReturn integer corresponding to the which number child site id is of node.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.hbathchain-Tuple{Int64, Int64, Any, Vararg{Any}}","page":"Methods","title":"MPSDynamics.hbathchain","text":"hbathchain(N::Int, d::Int, chainparams, longrangecc...; tree=false, reverse=false, coupletox=false)\n\nCreate an MPO representing a tight-binding chain of N oscillators with d Fock states each. Chain parameters are supplied in the standard form: chainparams =ϵ_0ϵ_1t_0t_1c_0. The output does not itself represent a complete MPO but will possess an end which is open and should be attached to another tensor site, usually representing the system.\n\nArguments\n\nreverse: If reverse=true create a chain were the last (i.e. Nth) site is the site which couples to the system\ncoupletox: Used to choose the form of the system coupling. coupletox=true gives a non-number conserving coupling of the form H_textI= A_textS(b_0^dagger + b_0) where A_textS is a system operator, while coupletox=false gives the number-converving coupling H_textI=(A_textS b_0^dagger + A_textS^dagger b_0)\ntree: If true the resulting chain will be of type TreeNetwork; useful for construcing tree-MPOs \n\nExample\n\nOne can constuct a system site tensor to couple to a chain by using the function up to populate the tensor. For example, to construct a system site with Hamiltonian Hs and coupling operator As, the system tensor M is constructed as follows for a non-number conserving interaction:\n\nu = one(Hs) # system identity\nM = zeros(1,3,2,2)\nM[1, :, :, :] = up(Hs, As, u)\n\nThe full MPO can then be constructed with:\n\nHmpo = [M, hbathchain(N, d, chainparams, coupletox=true)...]\n\nSimilarly for a number conserving interaction the site tensor would look like:\n\nu = one(Hs) # system identity\nM = zeros(1,4,2,2)\nM[1, :, :, :] = up(Hs, As, As', u)\n\nAnd the full MPO would be\n\nHmpo = [M, hbathchain(N, d, chainparams; coupletox=false)...]\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.isingmpo-Tuple{Int64}","page":"Methods","title":"MPSDynamics.isingmpo","text":"isingmpo(N; J=1.0, h=1.0)\n\nReturn the MPO representation of a N-spin 1D Ising model with external field vech = (00h).\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.measure-Tuple{Any, OneSiteObservable}","page":"Methods","title":"MPSDynamics.measure","text":"measure(A, O; kwargs...)\n\nMeasure observable O on mps state A\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.measure1siteoperator-Tuple{Vector, Any, Vector{Int64}}","page":"Methods","title":"MPSDynamics.measure1siteoperator","text":"measure1siteoperator(A::Vector, O, sites::Vector{Int})\n\nFor a list of tensors A representing a right orthonormalized MPS, compute the local expectation value of a one-site operator O for every site or just one if it is specified.\n\nFor calculating operators on single sites this will be more efficient if the site is on the left of the mps.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.measure1siteoperator-Tuple{Vector, Any}","page":"Methods","title":"MPSDynamics.measure1siteoperator","text":"measure1siteoperator(A::Vector, O)\n\nFor a list of tensors A representing a right orthonormalized MPS, compute the local expectation value of a one-site operator O for every site.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.measure2siteoperator-Tuple{Vector, Any, Any, Int64, Int64}","page":"Methods","title":"MPSDynamics.measure2siteoperator","text":" measure2siteoperator(A::Vector, M1, M2, j1, j2)\n\nCaculate expectation of M1*M2 where M1 acts on site j1 and M2 acts on site j2, assumes A is right normalised.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.modemps","page":"Methods","title":"MPSDynamics.modemps","text":"modemps(N::Int, k::Vector{Int}, numex::Int, chainparams=[fill(1.0,N), fill(1.0,N-1)])\n\nGenerate an MPS with numex excitations of an equal superposition of modes k of a bosonic tight-binding chain.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.modemps-2","page":"Methods","title":"MPSDynamics.modemps","text":"modemps(N::Int, k::Int, numex::Int, chainparams=[fill(1.0,N), fill(1.0,N-1)])\n\nGenerate an MPS with numex excitations of mode k of a bosonic tight-binding chain. \n\nchainparams takes the form [e::Vector, t::Vector] where e are the on-site energies and t are the hoppping parameters.\n\nThe returned MPS will have bond-dimensions and physical dimensions numex+1\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.mpsembed!-Tuple{Vector, Int64}","page":"Methods","title":"MPSDynamics.mpsembed!","text":"mpsembed(A::Vector, Dmax::Int)\n\nEmbed MPS A in manifold of max bond-dimension Dmax\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.mpsleftnorm!","page":"Methods","title":"MPSDynamics.mpsleftnorm!","text":"mpsleftnorm!(A::Vector, jq::Int=length(A))\n\nLeft orthoganalise MPS A up to site jq.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.mpsmixednorm!-Tuple{MPSDynamics.TreeNetwork, Int64}","page":"Methods","title":"MPSDynamics.mpsmixednorm!","text":"mpsmixednorm!(A::TreeNetwork, id::Int)\n\nNormalise tree-MPS A such that orthogonality centre is on site id.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.mpsmixednorm!-Tuple{Vector, Int64}","page":"Methods","title":"MPSDynamics.mpsmixednorm!","text":"mpsmixednorm!(A::Vector, OC::Int)\n\nPut MPS A into mixed canonical form with orthogonality centre on site OC.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.mpsmoveoc!-Tuple{MPSDynamics.TreeNetwork, Int64}","page":"Methods","title":"MPSDynamics.mpsmoveoc!","text":"mpsmoveoc!(A::TreeNetwork, id::Int)\n\nMove the orthogonality centre of right normalised tree-MPS A to site id.\n\nThis function will be more efficient than using mpsmixednorm! if the tree-MPS is already right-normalised.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.mpsrightnorm!","page":"Methods","title":"MPSDynamics.mpsrightnorm!","text":"mpsrightnorm!(A::Vector, jq::Int=1)\n\nRight orthoganalise MPS A up to site jq.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.mpsrightnorm!-Tuple{MPSDynamics.TreeNetwork}","page":"Methods","title":"MPSDynamics.mpsrightnorm!","text":"mpsrightnorm!(A::TreeNetwork)\n\nWhen applied to a tree-MPS, right normalise towards head-node.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.mpsshiftoc!-Tuple{MPSDynamics.TreeNetwork, Int64}","page":"Methods","title":"MPSDynamics.mpsshiftoc!","text":"mpsshiftoc!(A::TreeNetwork, newhd::Int)\n\nShift the orthogonality centre by one site, setting new head-node newhd.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.normmps-Tuple{MPSDynamics.TreeNetwork}","page":"Methods","title":"MPSDynamics.normmps","text":"normmps(net::TreeNetwork; mpsorthog=:None)\n\nWhen applied to a tree-MPS mpsorthog=:Left is not defined.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.normmps-Tuple{Vector}","page":"Methods","title":"MPSDynamics.normmps","text":"normmps(A::Vector; mpsorthog=:None)\n\nCalculate norm of MPS A.\n\nSetting mpsorthog=:Right/:Left will calculate the norm assuming right/left canonical form. Setting mpsorthog=OC::Int will cause the norm to be calculated assuming the orthoganility center is on site OC. If mpsorthog is :None the norm will be calculated as an MPS-MPS product.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.orthcentersmps-Tuple{Vector}","page":"Methods","title":"MPSDynamics.orthcentersmps","text":"orthcentersmps(A)\n\nCompute the orthoganality centres of MPS A.\n\nReturn value is a list in which each element is the corresponding site tensor of A with the orthoganility centre on that site. Assumes A is right normalised.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.physdims-Tuple{Vector}","page":"Methods","title":"MPSDynamics.physdims","text":"physdims(M)\n\nReturn the physical dimensions of an MPS or MPO M.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.productstatemps","page":"Methods","title":"MPSDynamics.productstatemps","text":"productstatemps(physdims::Dims, Dmax=1; state=:Vacuum, mpsorthog=:Right)\n\nReturn an MPS representing a product state with local Hilbert space dimensions given by physdims.\n\nBy default all bond-dimensions will be 1 since the state is a product state. However, to embed the product state in a manifold of greater bond-dimension, Dmax can be set accordingly.\n\nThe indvidual states of the MPS sites can be provided by setting state to a list of column vectors. Setting state=:Vacuum will produce an MPS in the vacuum state (where the state of each site is represented by a column vector with a 1 in the first row and zeros elsewhere). Setting state=:FullOccupy will produce an MPS in which each site is fully occupied (ie. a column vector with a 1 in the last row and zeros elsewhere).\n\nThe argument mpsorthog can be used to set the gauge of the resulting MPS.\n\nExample\n\njulia> ψ = unitcol(1,2); d = 6; N = 30; α = 0.1; Δ = 0.0; ω0 = 0.2; s = 1\n\njulia> cpars = chaincoeffs_ohmic(N, α, s)\n\njulia> H = spinbosonmpo(ω0, Δ, d, N, cpars)\n\njulia> A = productstatemps(physdims(H), state=[ψ, fill(unitcol(1,d), N)...]) # MPS representation of |ψ>|Vacuum>\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.productstatemps-2","page":"Methods","title":"MPSDynamics.productstatemps","text":"productstatemps(N::Int, d::Int, Dmax=1; state=:Vacuum, mpsorthog=:Right)\n\nReturn an N-site MPS with all local Hilbert space dimensions given by d. \n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.randisometry-Tuple{Type, Int64, Int64}","page":"Methods","title":"MPSDynamics.randisometry","text":"randisometry([T=Float64], dims...)\n\nConstruct a random isometry\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.randmps","page":"Methods","title":"MPSDynamics.randmps","text":"randmps(tree::Tree, physdims, Dmax::Int, T::Type{<:Number} = Float64)\n\nConstruct a random, right-normalised, tree-MPS, with structure given by tree and max bond-dimension given by Dmax.\n\nThe local Hilbert space dimensions are specified by physdims which can either be of type Dims{length(tree)}, specifying the dimension of each site, or of type Int, in which case the same local dimension is used for every site.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.randmps-2","page":"Methods","title":"MPSDynamics.randmps","text":"randmps(N::Int, d::Int, Dmax::Int, T=Float64)\n\nConstruct a random, N-site, right-normalised MPS with all local Hilbert space dimensions given by d.\n\n\n\n\n\n","category":"function"},{"location":"methods/#MPSDynamics.randmps-Union{Tuple{N}, Tuple{Tuple{Vararg{Int64, N}}, Int64}, Tuple{Tuple{Vararg{Int64, N}}, Int64, Type{<:Number}}} where N","page":"Methods","title":"MPSDynamics.randmps","text":"randmps(physdims::Dims{N}, Dmax::Int, T::Type{<:Number} = Float64) where {N}\n\nConstruct a random, right-normalised MPS with local Hilbert space dimensions given by physdims and max bond-dimension given by Dmax. \n\nT specifies the element type, eg. use T=ComplexF64 for a complex valued MPS.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.randtree-Tuple{Int64, Int64}","page":"Methods","title":"MPSDynamics.randtree","text":"randtree(numnodes::Int, maxdegree::Int)\n\nConstruct a random tree with nummodes modes and max degree maxdegree.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.rmsd-Tuple{Any, Any}","page":"Methods","title":"MPSDynamics.rmsd","text":"rmsd(dat1::Vector{Float64}, dat2::Vector{Float64})\n\nCalculate the root mean squared difference between two measurements of an observable over the same time period.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.spinbosonmpo-NTuple{5, Any}","page":"Methods","title":"MPSDynamics.spinbosonmpo","text":"spinbosonmpo(ω0, Δ, d, N, chainparams; rwa=false, tree=false)\n\nGenerate MPO for a spin-1/2 coupled to a chain of harmonic oscillators, defined by the Hamiltonian\n\nH = fracω_02σ_z + Δσ_x + c_0σ_x(b_0^dagger+b_0) + sum_i=0^N-1 t_i (b_i+1^dagger b_i +hc) + sum_i=0^N ϵ_ib_i^dagger b_i.\n\nThe spin is on site 1 of the MPS and the bath modes are to the right.\n\nThis Hamiltonain is unitarily equivalent (before the truncation to N sites) to the spin-boson Hamiltonian defined by\n\nH = fracω_02σ_z + Δσ_x + σ_xint_0^ dωsqrtfracJ(ω)π(b_ω^dagger+b_ω) + int_0^ dω ωb_ω^dagger b_ω.\n\nThe chain parameters, supplied by chainparams=ϵ_0ϵ_1t_0t_1c_0, can be chosen to represent any arbitrary spectral density J(ω) at any temperature.\n\nThe rotating wave approximation can be made by setting rwa=true.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.svdmps-Tuple{Any}","page":"Methods","title":"MPSDynamics.svdmps","text":"svdmps(A)\n\nFor a right normalised mps A compute the full svd spectrum for a bipartition at every bond.\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.svdtrunc-Tuple{Any}","page":"Methods","title":"MPSDynamics.svdtrunc","text":"U, S, Vd = svdtrunc(A; truncdim = max(size(A)...), truncerr = 0.)\n\nPerform a truncated SVD, with maximum number of singular values to keep equal to truncdim or truncating any singular values smaller than truncerr. If both options are provided, the smallest number of singular values will be kept. Unlike the SVD in Julia, this returns matrix U, a diagonal matrix (not a vector) S, and Vt such that A ≈ U * S * Vt\n\n\n\n\n\n","category":"method"},{"location":"methods/#MPSDynamics.xyzmpo-Tuple{Int64}","page":"Methods","title":"MPSDynamics.xyzmpo","text":"xyzmpo(N::Int; Jx=1.0, Jy=Jx, Jz=Jx, hx=0., hz=0.)\n\nReturn the MPO representation of the N-spin XYZ Hamiltonian with external field vech=(h_x 0 h_z).\n\nH = sum_n=1^N-1 -J_x σ_x^n σ_x^n+1 - J_y σ_y^n σ_y^n+1 - J_z σ_z^n σ_z^n+1 + sum_n=1^N(- h_x σ_x^n - h_z σ_z^n).\n\n\n\n\n\n","category":"method"},{"location":"#Introduction","page":"Introduction","title":"Introduction","text":"","category":"section"},{"location":"","page":"Introduction","title":"Introduction","text":"The MPSDynamics.jl package provides an easy to use interface for performing tensor network simulations on matrix product states (MPS) and tree tensor network (TTN) states. Written in the Julia programming language, MPSDynamics.jl is a versatile open-source package providing a choice of several variants of the Time-Dependent Variational Principle (TDVP) method for time evolution. The package also provides strong support for the measurement of observables, as well as the storing and logging of data, which makes it a useful tool for the study of many-body physics. The package has been developed with the aim of studying non-Markovian open system dynamics at finite temperature using the state-of-the-art numerically exact Thermalized-Time Evolving Density operator with Orthonormal Polynomials Algorithm (T-TEDOPA) based on environment chain mapping. However the methods implemented can equally be applied to other areas of physics.","category":"page"},{"location":"","page":"Introduction","title":"Introduction","text":"warning: Warning\nThe documentation is currently undergoing massive restructurations/improvement. It's a work in progress until the next release scheduled for May, 2024.","category":"page"},{"location":"#Installation","page":"Introduction","title":"Installation","text":"","category":"section"},{"location":"","page":"Introduction","title":"Introduction","text":"The package may be installed by typing the following into a Julia REPL","category":"page"},{"location":"","page":"Introduction","title":"Introduction","text":" ] add https://github.com/shareloqs/MPSDynamics.git","category":"page"},{"location":"#Table-of-Contents","page":"Introduction","title":"Table of Contents","text":"","category":"section"},{"location":"","page":"Introduction","title":"Introduction","text":"Pages = [\"index.md\", \"user-guide.md\", \"./examples/sbm.md\", \"./examples/puredephasing.md\", \"theory.md\", \"methods.md\", \"dev.md\"]\nDepth = 3","category":"page"},{"location":"#Citation","page":"Introduction","title":"Citation","text":"","category":"section"},{"location":"","page":"Introduction","title":"Introduction","text":"If you use the package in your research, please consider citing it. You can add the Zenodo record to your BibTex file:","category":"page"},{"location":"","page":"Introduction","title":"Introduction","text":"@misc{mpsdynamics_zenodo2021,\n\ttitle = {shareloqs/{MPSDynamics}},\n\tshorttitle = {{MPSDynamics.jl}},\n\turl = {https://zenodo.org/record/5106435},\n\tabstract = {Tensor network simulations for finite temperature, open quantum system dynamics},\n\tpublisher = {Zenodo},\n\tauthor = {Dunnett, Angus and Lacroix, Thibaut and Le Dé, Brieuc and Riva, Angela},\n\tyear = {2021},\n\tdoi = {10.5281/zenodo.5106435},\n}","category":"page"}] } diff --git a/docs/theory/index.html b/docs/theory/index.html index d83b0a6..7e81eb5 100644 --- a/docs/theory/index.html +++ b/docs/theory/index.html @@ -1,2 +1,4 @@ -Theoretical Background · MPSDynamics.jl

      Theoretical Background

      Chain-Mapping of bosonic environments

      We consider, in the Schrödinger picture, a general Hamiltonian where a non-specified system interacts linearly with a bosonic environments

      \[ \hat{H} = \hat{H}_S + \int_0^{+\infty} \hbar\omega\hat{a}^\dagger_\omega\hat{a}_\omega\ \mathrm{d}\omega + \hat{A}_S\int_0^{+\infty}\sqrt{J(\omega)}\left(\hat{a}_\omega + \hat{a}^\dagger_\omega\right)\mathrm{d}\omega\]

      where $\hat{a}_\omega$ ($\hat{a}^\dagger_\omega$) is a bosonic annihilation (creation) operator for a normal mode of the environment of energy $\hbar\omega$, $\hat{A}_S$ is a system operator, and $J(\omega) = \sum_k |g_k|^2\delta(\omega - \omega_k)$ is the bath spectral density (SD), defined with the microscopic system-environment coupling strength $g_k$. The SD quantifies the coupling strengths of the different normal modes of the environment with the system. Any SD that is not flat corresponds to a non-Markovian environment.

      Zero Temperature

      Let us consider the Hamiltonian presented in Eq.(1). We can introduce a unitary transformation of the continuous normal modes $\hat{a}_\omega$ to an infinite discrete set of interacting modes $\hat{b}_n$[chin_exact_2010].

      \[ \hat{a}_\omega = \sum_{n=0}^{+\infty} U_n(\omega)\hat{b}_n = \sum_{n=0}^{+\infty} \sqrt{J(\omega)}P_n(\omega)\hat{b}_n\ ,\]

      where $P_n(\omega)$ are orthonormal polynomials such that

      \[ \int_{0}^{+\infty}P_n(\omega)P_m(\omega)J(\omega)\mathrm{d}\omega = \delta_{n,m}\ ;\]

      and the inverse transformation is

      \[ \hat{b}_n = \int_0^{+\infty} U_n(\omega)\hat{a}_\omega\mathrm{d}\omega\ .\]

      Note that the orthonormality of the polynomials ensures the unitarity of the transformation defined in Eq.(2). The mapping from a continuous set of modes to a (still infinite) discrete set might seem counter-intuitive, however it is a direct consequence of the separability of the underlying Hilbert space.

      Under this transformation, the Hamiltonian in Eq.(1) becomes

      \[ \hat{H}= \hat{H}_S + \sum_{n=0}^{+\infty}\varepsilon_n\hat{b}_n^\dagger\hat{b}_n + t_n(\hat{b}_{n+1}^\dagger\hat{b}_n + \mathrm{h.c.}) + \kappa\hat{A}_S(\hat{b}_0 + \hat{b}_0^\dagger)\ .\]

      Hence, this mapping transforms the normal bath Hamiltonian into a tight-binding Hamiltonian with on-site energies $\varepsilon_n$ and hopping energies $t_n$. Another important consequence of this mapping is that now the system only interacts with the first mode $n = 0$ of the chain-mapped environment. The chain coefficients $\varepsilon_n$, $t_n$, and the coupling $\kappa$ depend solely on the SD.

      This makes chain mapping a tool of choice for describing systems coupled to environment with highly structured SD (e.g. experimentally measured or calculated ab initio)[chin_role_2013][alvertis_nonequilibrium_2019][dunnett_influence_2021][caycedosoler_exact_2022]. In this new representation, the Hamiltonian in Eq.(5) has naturally a 1D chain topology. This makes its representation as a Matrix Product Operator (MPO) and the representation of the joint {System + Environment} wave-function as a Matrix Product State (MPS) suited [orus_practical_2014][paeckel_timeevolution_2019].

      The orthogonal polynomial-based chain mapping and the subsequent representation of the joint wave-function as a MPS (and the operators as MPO) are the building blocks of the Time-dependent Density operator with Orthonormal Polynomials Algorithm (TEDOPA) one of the state-of-the-art numerically exact method to simulate the dynamics of open quantum systems especially in the non-Markovian, non-perturbative regimes both at zero and finite temperatures [prior_efficient_2010][woods_simulating_2015][tamascelli_efficient_2019][dunnett_simulating_2021][lacroix_unveiling_2021].

      Finite Temperature

      Explain that by extending the bath to negative frequencies and having temperature-dependent system environment couplings, it is possible to describe the finite temperature case as an effective zero temperature one. Hence, we can keep the pure state description and avoid moving to density matrices at the cost of doubling the size of the environment.

      Computation of the chain coefficients

      A useful property of the orthonormal polynomials is that they obey a recurrence relation

      \[ P_n(\omega) = (C_{n-1}\omega - A_{n-1})P_{n-1}(\omega) + B_{n-1}P_{n-2}(\omega)\ ,\]

      where $A_n$ is related to the first moment of $P_n$, $B_n$ and $C_n$ to the norms of $P_n$ and $P_{n-1}$[appel_mathematics_2007]. This recurrence relation can be used to construct the polynomials with the conditions that $P_0(\omega) = ||p_0||^{-1} = \left(\int_{\mathbb{R}^{+}} J(\omega)\mathrm{d}\omega \right)^{-\frac{1}{2}}$ and $P_{-1}(\omega) = 0$, with $||\bullet||$ the norm of $\bullet$ with respect to the measure $J(\omega)$, and $P_n(\omega) = p_n(\omega)||p_n||^{-1}$ ; where the polynomials $\{p_n\}_{n\in\mathbb{N}}$ are the so called monic polynomials where the factor $a_n$ in front of $\omega^{n}$ is equal to 1.

      The energy of the chain mode $n$ is given by $\varepsilon_n = A_n C_n^{-1}$ and $t_n=C_n^{-1}$ is the coupling between mode $n$ and $n+1$[chin_exact_2010].

      The system couples only to the first mode with the coupling strength $\kappa = ||p_0||$.

      Explain that for some weight function/SD they are known analytically and that for others we can use the build-in routines inspired by Gautschi or the PolyChaos.jl package.

      Tensor Networks

      A multipartite quantum state $|\psi\rangle$, e.g. a $N$-site system where the sites can each be in a state $|\phi_i\rangle$ belonging to a $d$-dimensional Hilbert space, can be written as follows

      \[ |\psi\rangle = \sum_{\{i_k\}}c_{i_1\ldots i_N}|\phi_{i_1}\rangle\otimes\ldots\otimes|\phi_{i_N}\rangle\ ,\]

      where the complex numbers $c_{i_1\ldots i_N}$ are the amplitudes of each state $|\phi_{i_1}\rangle\otimes\ldots\otimes|\phi_{i_N}\rangle$ whose superpositions form in full generality the state $|\psi\rangle$. Thus the state $|\psi\rangle$ can be completely represented by a rank-$N$ tensor $c$ that is the collection of all possible amplitudes $c_{i_1\ldots i_N}$. Here by the rank of a tensor, we simply mean the number of indices it has.

      MPS

      The tensor $c$ of a quantum state $|\psi\rangle$ corresponding to a one-dimensional system can be decomposed into a product of $N$ smaller rank-3 tensors $T_{k}$ (except for the first and last sites where the tensors will have a rank-2)

      \[ c_{i_1\ldots i_N} = \sum_{\{\alpha\}} T^{\alpha_1}_{i_1}T^{\alpha_1\alpha_2\ }_{i_2}T^{\alpha_2\alpha_3\ }_{i_3}\ldots T^{\alpha_{N-1}}_{i_N} \ .\]

      In this form, the local tensor $T_k$ contains the information on the quantum state on site $k$ and its relation (especially the entanglement) with the neighbouring sites.

      The decomposition of the tensor of the amplitudes of a quantum state into a product of smaller rank tensors is called a Matrix Product State decomposition.

      The contracted indices $\alpha_k$ between the tensors are called virtual indices and carry information about the correlations between bi-partitions of the state at bond $k$. The number of different values a virtual index can take is called the bond dimension and is denoted $D$. The free indices $i_k$ associated with local quantum states are called physical indices. Thus, they can take $d$ values (with $d$ the dimension of the local Hilbert space).

      Any state in the Hilbert space of a one-dimensional many-body system can in principle be represented by a MPS by choosing a sufficiently large value for the bond dimension $D$ \cite{Orus}. On top of this intellectually satisfying property of MPSs being a dense set of states for a 1d-system, they can also be used as a practical Ansätze for a many-body quantum states by setting a maximal allowed value $\chi$ for the bond dimension $D$. In doing so, we restrict ourselves to a corner of the total Hilbert space. The rationale behind this Ansatz is the following: if the initial quantum state of a many-body system has a low bond dimension (typically if the initial state is a product state with $D = 1$), then in a finite time it will only be able to explore a region of the Hilbert space that is not to far away from its starting point. Thus, the bond dimension will not have the time to diverge exponentially \cite{poulinquantum2011}. However, depending on the physical system at hand, this sub-manifold of the Hilbert space could still be "too large". There is an additional reason that explains why MPSs are good Ansätze for 1d physical systems. Most many-body Hamiltonians we (physicists) are interested in are local, meaning that the interactions they describe involve objects that are "neighbours". For such Hamiltonians, the ground states (outside of potential critical phases) follow the so called area law for the entanglement entropy.\cite{srednickientropy1993, vidalentanglement2003, wolfarea2008}. This law states that the entanglement entropy $S_{vN}$ of a bi-partition of the system is proportional, not to the volume of the partition as one might expect, but to the hyper-surface of the partition's boundary; hence the name "area law". For a 3d system this corresponds to an actual surface area $A$, $S_{vN} \sim A$; for a 2d system it corresponds to the length $L$ of the partition's boundary, $S_{vN} \sim L$; and in 1d the boundary reduces to a point, thus the entropy will be independent of the size of the system $S_{vN} \sim \text{constant}$. The MPSs are states that satisfy this area law.

      An application of the Singular Value Decomposition is to create efficient approximations of quantum states to perform computations. The main idea is to reduce the content of the MPS to keep only the parts that contain the physics of interest. One method to realise this approximation is to do a SVD on each of the tensors of the MPS after each time step of the state time-evolution and to trim the smallest singular values in order to decrease the bond dimension of the MPS down to a chosen maximal value $\chi$. The corresponding columns and rows of the unitary matrices $U$ and $V^\dagger$ are also removed. Then, the trimmed matrices $\tilde{U}$, $\tilde{S}$ and $\tilde{V}^\dagger$ are contracted back to give an approximated tensor $T$ with a smaller bond dimension. Another way to apply the restricted rank approximation is to restrict oneself into working in a manifold of fixed bond dimension $D$ and to use methods that can enforce this constraint.

      MPO

      In order to compute expectation values of observables or apply unitary transformations to a quantum state, we need a TN representation of operators. In the same fashion as a one-dimensional quantum state can be represented as a MPS, operators acting on those states can be represented as Matrix Product Operators (MPO). For an operator $\hat{O}$, its MPO can be defined as follows

      \[ \hat{O} = \sum_{\{i_k\}\{i_k^{'}\} \{w\}} W^{i_1\ i^{'}_1}_{1\ w_0w_1}\ldots W^{i_N\ i^{'}_N}_{N\ w_{N-1}w_N} |\phi_{i_1^{'}}\ldots \phi_{i_N^{'}}\rangle\langle\phi_{i_1}\ldots \phi_{i_N}| \]

      The contracted indices between the tensors are called virtual indices. The free indices are called physical indices and correspond to the different input and output local quantum states. They can take $d$ values (with $d$ the dimension of the local Hilbert space).

      TTN

      A natural extension to the MPS is the (loop-free) tree tensor network. A TTN is a generalisation of the MPS wherein each site, instead of being connected to only one other site to its right, may be connected to any arbitrary number of child sites. Provided the tree does not contain any loops, everything that one can do to an MPS/MPO can be extended straight-forwardly to TTN states and TTN operators. The generalisation to trees introduces no new conceptual complexity (only implementational complexity). The sites of a TTN are usually referred to as nodes. For our purposes, every node of a TTN state and operator has one parent leg, and any number (including zero) of child legs. The first node is known as the head-node and has a dummy parent leg with dimension 1.

      Time-Dependent Variational Principal

      The original idea behind TDVP goes back to Dirac \cite{diracnote1930} and Frenkel \cite{frenkelwave1934}. The main point, in the modern tensor networks formulation, is that instead of solving the Schrödinger equation and then truncating the MPS representation of the quantum state, one can solve the equations of motion projected into a space of restricted bond dimension \cite{haegemantime-dependent2011, haegemanunifying2016}.

      The general formulation of the Dirac-Frenkel Variational Principle~\cite{raabdiracfrenkelmclachlan2000} is that one looks for a solution $|\varphi\rangle \in \mathcal{M}$ of the Schrödinger equation where $\mathcal{M} \subset \mathcal{H}$ is a manifold of the total Hilbert space $\mathcal{H}$ in which we think that the relevant physical states `live'.

      We define $T_{|\varphi\rangle}\mathcal{M}$ the tangent space of $\mathcal{M}$ around the state $|\varphi\rangle$. The criterion to find $|\varphi\rangle$ is that for every state $|\chi\rangle \in T_{|\varphi\rangle}\mathcal{M}$

      \[ \langle\chi|\left(\frac{\mathrm{d}}{\mathrm{d}t} - \frac{1}{\mathrm{i}\hbar}\hat{H}\right)|\varphi\rangle =0\ ,\]

      which can be interpreted as saying that the time evolution procedure should keep $|\varphi\rangle$ inside of the manifold $\mathcal{M}$.

      The term variational in the name of the method comes from the fact that in practice one aims at minimising the right-hand side of Eq.~(\ref{eq:DiracFrenkel1}) to find $|\varphi\rangle$.

      Introducing $\hat{P}_{T_{|\varphi\rangle}\mathcal{M}}$ the projector onto the tangent space $T_{|\varphi\rangle}\mathcal{M}$, we can write the state $|\chi\rangle = \hat{P}_{T_{|\varphi\rangle}\mathcal{M}}|\phi\rangle$ with $|\phi\rangle$ a state in $\mathcal{H}$. Leading to

      \[ \forall |\phi\rangle \in \mathcal{H}, \ \langle\phi|\hat{P}_{T_{|\varphi\rangle}\mathcal{M}}\left(\frac{\mathrm{d}}{\mathrm{d}t} - \frac{1}{\mathrm{i}\hbar}\hat{H}\right)|\varphi\rangle =0\ .\]

      Because the time derivation and the projector commute, we have

      \[ \forall |\phi\rangle \in \mathcal{H}, \ \langle\phi|\left(\frac{\mathrm{d}}{\mathrm{d}t} - \frac{1}{\mathrm{i}\hbar}\hat{P}_{T_{|\varphi\rangle}\mathcal{M}}\hat{H}\right)|\varphi\rangle =0\ .\]

      This equation must be true for any $|\phi\rangle \in \mathcal{H}$, Eq.~(\ref{eq:DiracFrenkel1}) can thus be written

      \[ \left(\frac{\mathrm{d}}{\mathrm{d}t} - \frac{1}{\mathrm{i}\hbar}\hat{P}_{T_{|\varphi\rangle}\mathcal{M}}\hat{H}\right)|\varphi\rangle =0\ .\]

      In the context of MPS, the manifold $\mathcal{M}$ will correspond to the space of full-ranked MPS of a given bond dimension $D$, and the tangent space will be the space spanned by variations of single MPS tensors.

      The major advantage of this method is that it naturally preserves the unitarity of the time evolution and conserves the energy.

      Bibliography

      • chin_exact_2010

        Chin, A. W.; Rivas, Á.; Huelga, S. F.; Plenio, M. B. Exact Mapping between System-Reservoir Quantum Models and Semi-Infinite Discrete Chains Using Orthogonal Polynomials. Journal of Mathematical Physics 2010, 51 (9), 092109. https://doi.org/10.1063/1.3490188.

      • chin_role_2013

        Chin, A. W.; Prior, J.; Rosenbach, R.; Caycedo-Soler, F.; Huelga, S. F.; Plenio, M. B. The Role of Non-Equilibrium Vibrational Structures in Electronic Coherence and Recoherence in Pigment–Protein Complexes. Nature Phys 2013, 9 (2), 113–118. https://doi.org/10.1038/nphys2515.

      • alvertis_nonequilibrium_2019

        Alvertis, A. M.; Schröder, F. A. Y. N.; Chin, A. W. Non-Equilibrium Relaxation of Hot States in Organic Semiconductors: Impact of Mode-Selective Excitation on Charge Transfer. J. Chem. Phys. 2019, 151 (8), 084104. https://doi.org/10.1063/1.5115239.

      • dunnett_influence_2021

        Dunnett, A. J.; Gowland, D.; Isborn, C. M.; Chin, A. W.; Zuehlsdorff, T. J. Influence of Non-Adiabatic Effects on Linear Absorption Spectra in the Condensed Phase: Methylene Blue. J. Chem. Phys. 2021, 155 (14), 144112. https://doi.org/10.1063/5.0062950.

      • caycedosoler_exact_2022

        Caycedo-Soler, F.; Mattioni, A.; Lim, J.; Renger, T.; Huelga, S. F.; Plenio, M. B. Exact Simulation of Pigment-Protein Complexes Unveils Vibronic Renormalization of Electronic Parameters in Ultrafast Spectroscopy. Nat Commun 2022, 13 (1), 2912. https://doi.org/10.1038/s41467-022-30565-4.

      • orus_practical_2014

        Orus, R. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics 2014, 349, 117–158. https://doi.org/10.1016/j.aop.2014.06.013.

      • paeckel_timeevolution_2019

        Paeckel, S.; Köhler, T.; Swoboda, A.; Manmana, S. R.; Schollwöck, U.; Hubig, C. Time-Evolution Methods for Matrix-Product States. Annals of Physics 2019, 411, 167998. https://doi.org/10.1016/j.aop.2019.167998.

      • prior_efficient_2010

        Prior, J.; Chin, A. W.; Huelga, S. F.; Plenio, M. B. Efficient Simulation of Strong System-Environment Interactions. Phys. Rev. Lett. 2010, 105 (5), 050404. https://doi.org/10.1103/PhysRevLett.105.050404.

      • woods_simulating_2015

        Woods, M. P.; Cramer, M.; Plenio, M. B. Simulating Bosonic Baths with Error Bars. Phys. Rev. Lett. 2015, 115 (13), 130401. https://doi.org/10.1103/PhysRevLett.115.130401.

      • tamascelli_efficient_2019

        Tamascelli, D.; Smirne, A.; Lim, J.; Huelga, S. F.; Plenio, M. B. Efficient Simulation of Finite-Temperature Open Quantum Systems. Phys. Rev. Lett. 2019, 123 (9), 090402. https://doi.org/10.1103/PhysRevLett.123.090402.

      • dunnett_simulating_2021

        Dunnett, A. J.; Chin, A. W. Simulating Quantum Vibronic Dynamics at Finite Temperatures With Many Body Wave Functions at 0 K. Front. Chem. 2021, 8. https://doi.org/10.3389/fchem.2020.600731.

      • lacroix_unveiling_2021

        Lacroix, T.; Dunnett, A.; Gribben, D.; Lovett, B. W.; Chin, A. Unveiling Non-Markovian Spacetime Signaling in Open Quantum Systems with Long-Range Tensor Network Dynamics. Phys. Rev. A 2021, 104 (5), 052204. https://doi.org/10.1103/PhysRevA.104.052204.

      • appel_mathematics_2007

        Appel, W. Mathematics for Physics and Physicists; Princeton University Press, 2007.

      +Theoretical Background · MPSDynamics.jl

      Theoretical Background

      Chain-Mapping of bosonic environments

      We consider, in the Schrödinger picture, a general Hamiltonian where a non-specified system interacts linearly with a bosonic environments

      \[\begin{align} + \hat{H} =& \hat{H}_S + \int_0^{+\infty} \hbar\omega\hat{a}^\dagger_\omega\hat{a}_\omega\ \mathrm{d}\omega + \hat{A}_S\int_0^{+\infty}\sqrt{J(\omega)}\left(\hat{a}_\omega + \hat{a}^\dagger_\omega\right)\mathrm{d}\omega +\end{align}\]

      where $\hat{a}_\omega$ ($\hat{a}^\dagger_\omega$) is a bosonic annihilation (creation) operator for a normal mode of the environment of energy $\hbar\omega$, $\hat{A}_S$ is a system operator, and $J(\omega) = \sum_k |g_k|^2\delta(\omega - \omega_k)$ is the bath spectral density (SD), defined with the microscopic system-environment coupling strength $g_k$. The SD quantifies the coupling strengths of the different normal modes of the environment with the system. Any SD that is not flat corresponds to a non-Markovian environment.

      Zero Temperature

      Let us consider the Hamiltonian presented in Eq.(1). We can introduce a unitary transformation of the continuous normal modes $\hat{a}_\omega$ to an infinite discrete set of interacting modes $\hat{b}_n$[chin_exact_2010].

      \[ \hat{a}_\omega = \sum_{n=0}^{+\infty} U_n(\omega)\hat{b}_n = \sum_{n=0}^{+\infty} \sqrt{J(\omega)}P_n(\omega)\hat{b}_n\ ,\]

      where $P_n(\omega)$ are orthonormal polynomials such that

      \[ \int_{0}^{+\infty}P_n(\omega)P_m(\omega)J(\omega)\mathrm{d}\omega = \delta_{n,m}\ ;\]

      and the inverse transformation is

      \[ \hat{b}_n = \int_0^{+\infty} U_n(\omega)\hat{a}_\omega\mathrm{d}\omega\ .\]

      Note that the orthonormality of the polynomials ensures the unitarity of the transformation defined in Eq.(2). The mapping from a continuous set of modes to a (still infinite) discrete set might seem counter-intuitive, however it is a direct consequence of the separability of the underlying Hilbert space.

      Under this transformation, the Hamiltonian in Eq.(1) becomes

      \[ \hat{H}= \hat{H}_S + \sum_{n=0}^{+\infty}\varepsilon_n\hat{b}_n^\dagger\hat{b}_n + t_n(\hat{b}_{n+1}^\dagger\hat{b}_n + \mathrm{h.c.}) + \kappa\hat{A}_S(\hat{b}_0 + \hat{b}_0^\dagger)\ .\]

      Hence, this mapping transforms the normal bath Hamiltonian into a tight-binding Hamiltonian with on-site energies $\varepsilon_n$ and hopping energies $t_n$. Another important consequence of this mapping is that now the system only interacts with the first mode $n = 0$ of the chain-mapped environment. The chain coefficients $\varepsilon_n$, $t_n$, and the coupling $\kappa$ depend solely on the SD.

      This makes chain mapping a tool of choice for describing systems coupled to environment with highly structured SD (e.g. experimentally measured or calculated ab initio)[chin_role_2013][alvertis_nonequilibrium_2019][dunnett_influence_2021][caycedosoler_exact_2022]. In this new representation, the Hamiltonian in Eq.(5) has naturally a 1D chain topology. This makes its representation as a Matrix Product Operator (MPO) and the representation of the joint {System + Environment} wave-function as a Matrix Product State (MPS) suited [orus_practical_2014][paeckel_timeevolution_2019].

      The orthogonal polynomial-based chain mapping and the subsequent representation of the joint wave-function as a MPS (and the operators as MPO) are the building blocks of the Time-dependent Density operator with Orthonormal Polynomials Algorithm (TEDOPA) one of the state-of-the-art numerically exact method to simulate the dynamics of open quantum systems especially in the non-Markovian, non-perturbative regimes both at zero and finite temperatures [prior_efficient_2010][woods_simulating_2015][tamascelli_efficient_2019][dunnett_simulating_2021][lacroix_unveiling_2021].

      Finite Temperature

      Explain that by extending the bath to negative frequencies and having temperature-dependent system environment couplings, it is possible to describe the finite temperature case as an effective zero temperature one. Hence, we can keep the pure state description and avoid moving to density matrices at the cost of doubling the size of the environment.

      Computation of the chain coefficients

      A useful property of the orthonormal polynomials is that they obey a recurrence relation

      \[ P_n(\omega) = (C_{n-1}\omega - A_{n-1})P_{n-1}(\omega) + B_{n-1}P_{n-2}(\omega)\ ,\]

      where $A_n$ is related to the first moment of $P_n$, $B_n$ and $C_n$ to the norms of $P_n$ and $P_{n-1}$[appel_mathematics_2007]. This recurrence relation can be used to construct the polynomials with the conditions that $P_0(\omega) = ||p_0||^{-1} = \left(\int_{\mathbb{R}^{+}} J(\omega)\mathrm{d}\omega \right)^{-\frac{1}{2}}$ and $P_{-1}(\omega) = 0$, with $||\bullet||$ the norm of $\bullet$ with respect to the measure $J(\omega)$, and $P_n(\omega) = p_n(\omega)||p_n||^{-1}$ ; where the polynomials $\{p_n\}_{n\in\mathbb{N}}$ are the so called monic polynomials where the factor $a_n$ in front of $\omega^{n}$ is equal to 1.

      The energy of the chain mode $n$ is given by $\varepsilon_n = A_n C_n^{-1}$ and $t_n=C_n^{-1}$ is the coupling between mode $n$ and $n+1$[chin_exact_2010].

      The system couples only to the first mode with the coupling strength $\kappa = ||p_0||$.

      Explain that for some weight function/SD they are known analytically and that for others we can use the build-in routines inspired by Gautschi or the PolyChaos.jl package.

      Tensor Networks

      A multipartite quantum state $|\psi\rangle$, e.g. a $N$-site system where the sites can each be in a state $|\phi_i\rangle$ belonging to a $d$-dimensional Hilbert space, can be written as follows

      \[ |\psi\rangle = \sum_{\{i_k\}}c_{i_1\ldots i_N}|\phi_{i_1}\rangle\otimes\ldots\otimes|\phi_{i_N}\rangle\ ,\]

      where the complex numbers $c_{i_1\ldots i_N}$ are the amplitudes of each state $|\phi_{i_1}\rangle\otimes\ldots\otimes|\phi_{i_N}\rangle$ whose superpositions form in full generality the state $|\psi\rangle$. Thus the state $|\psi\rangle$ can be completely represented by a rank-$N$ tensor $c$ that is the collection of all possible amplitudes $c_{i_1\ldots i_N}$. Here by the rank of a tensor, we simply mean the number of indices it has.

      MPS

      The tensor $c$ of a quantum state $|\psi\rangle$ corresponding to a one-dimensional system can be decomposed into a product of $N$ smaller rank-3 tensors $T_{k}$ (except for the first and last sites where the tensors will have a rank-2)

      \[ c_{i_1\ldots i_N} = \sum_{\{\alpha\}} T^{\alpha_1}_{i_1}T^{\alpha_1\alpha_2\ }_{i_2}T^{\alpha_2\alpha_3\ }_{i_3}\ldots T^{\alpha_{N-1}}_{i_N} \ .\]

      In this form, the local tensor $T_k$ contains the information on the quantum state on site $k$ and its relation (especially the entanglement) with the neighbouring sites.

      The decomposition of the tensor of the amplitudes of a quantum state into a product of smaller rank tensors is called a Matrix Product State decomposition.

      The contracted indices $\alpha_k$ between the tensors are called virtual indices and carry information about the correlations between bi-partitions of the state at bond $k$. The number of different values a virtual index can take is called the bond dimension and is denoted $D$. The free indices $i_k$ associated with local quantum states are called physical indices. Thus, they can take $d$ values (with $d$ the dimension of the local Hilbert space).

      Any state in the Hilbert space of a one-dimensional many-body system can in principle be represented by a MPS by choosing a sufficiently large value for the bond dimension $D$ \cite{Orus}. On top of this intellectually satisfying property of MPSs being a dense set of states for a 1d-system, they can also be used as a practical Ansätze for a many-body quantum states by setting a maximal allowed value $\chi$ for the bond dimension $D$. In doing so, we restrict ourselves to a corner of the total Hilbert space. The rationale behind this Ansatz is the following: if the initial quantum state of a many-body system has a low bond dimension (typically if the initial state is a product state with $D = 1$), then in a finite time it will only be able to explore a region of the Hilbert space that is not to far away from its starting point. Thus, the bond dimension will not have the time to diverge exponentially \cite{poulinquantum2011}. However, depending on the physical system at hand, this sub-manifold of the Hilbert space could still be "too large". There is an additional reason that explains why MPSs are good Ansätze for 1d physical systems. Most many-body Hamiltonians we (physicists) are interested in are local, meaning that the interactions they describe involve objects that are "neighbours". For such Hamiltonians, the ground states (outside of potential critical phases) follow the so called area law for the entanglement entropy.\cite{srednickientropy1993, vidalentanglement2003, wolfarea2008}. This law states that the entanglement entropy $S_{vN}$ of a bi-partition of the system is proportional, not to the volume of the partition as one might expect, but to the hyper-surface of the partition's boundary; hence the name "area law". For a 3d system this corresponds to an actual surface area $A$, $S_{vN} \sim A$; for a 2d system it corresponds to the length $L$ of the partition's boundary, $S_{vN} \sim L$; and in 1d the boundary reduces to a point, thus the entropy will be independent of the size of the system $S_{vN} \sim \text{constant}$. The MPSs are states that satisfy this area law.

      An application of the Singular Value Decomposition is to create efficient approximations of quantum states to perform computations. The main idea is to reduce the content of the MPS to keep only the parts that contain the physics of interest. One method to realise this approximation is to do a SVD on each of the tensors of the MPS after each time step of the state time-evolution and to trim the smallest singular values in order to decrease the bond dimension of the MPS down to a chosen maximal value $\chi$. The corresponding columns and rows of the unitary matrices $U$ and $V^\dagger$ are also removed. Then, the trimmed matrices $\tilde{U}$, $\tilde{S}$ and $\tilde{V}^\dagger$ are contracted back to give an approximated tensor $T$ with a smaller bond dimension. Another way to apply the restricted rank approximation is to restrict oneself into working in a manifold of fixed bond dimension $D$ and to use methods that can enforce this constraint.

      MPO

      In order to compute expectation values of observables or apply unitary transformations to a quantum state, we need a TN representation of operators. In the same fashion as a one-dimensional quantum state can be represented as a MPS, operators acting on those states can be represented as Matrix Product Operators (MPO). For an operator $\hat{O}$, its MPO can be defined as follows

      \[ \hat{O} = \sum_{\{i_k\}\{i_k^{'}\} \{w\}} W^{i_1\ i^{'}_1}_{1\ w_0w_1}\ldots W^{i_N\ i^{'}_N}_{N\ w_{N-1}w_N} |\phi_{i_1^{'}}\ldots \phi_{i_N^{'}}\rangle\langle\phi_{i_1}\ldots \phi_{i_N}| \]

      The contracted indices between the tensors are called virtual indices. The free indices are called physical indices and correspond to the different input and output local quantum states. They can take $d$ values (with $d$ the dimension of the local Hilbert space).

      TTN

      A natural extension to the MPS is the (loop-free) tree tensor network. A TTN is a generalisation of the MPS wherein each site, instead of being connected to only one other site to its right, may be connected to any arbitrary number of child sites. Provided the tree does not contain any loops, everything that one can do to an MPS/MPO can be extended straight-forwardly to TTN states and TTN operators. The generalisation to trees introduces no new conceptual complexity (only implementational complexity). The sites of a TTN are usually referred to as nodes. For our purposes, every node of a TTN state and operator has one parent leg, and any number (including zero) of child legs. The first node is known as the head-node and has a dummy parent leg with dimension 1.

      Time-Dependent Variational Principal

      The original idea behind TDVP goes back to Dirac \cite{diracnote1930} and Frenkel \cite{frenkelwave1934}. The main point, in the modern tensor networks formulation, is that instead of solving the Schrödinger equation and then truncating the MPS representation of the quantum state, one can solve the equations of motion projected into a space of restricted bond dimension \cite{haegemantime-dependent2011, haegemanunifying2016}.

      The general formulation of the Dirac-Frenkel Variational Principle~\cite{raabdiracfrenkelmclachlan2000} is that one looks for a solution $|\varphi\rangle \in \mathcal{M}$ of the Schrödinger equation where $\mathcal{M} \subset \mathcal{H}$ is a manifold of the total Hilbert space $\mathcal{H}$ in which we think that the relevant physical states `live'.

      We define $T_{|\varphi\rangle}\mathcal{M}$ the tangent space of $\mathcal{M}$ around the state $|\varphi\rangle$. The criterion to find $|\varphi\rangle$ is that for every state $|\chi\rangle \in T_{|\varphi\rangle}\mathcal{M}$

      \[ \langle\chi|\left(\frac{\mathrm{d}}{\mathrm{d}t} - \frac{1}{\mathrm{i}\hbar}\hat{H}\right)|\varphi\rangle =0\ ,\]

      which can be interpreted as saying that the time evolution procedure should keep $|\varphi\rangle$ inside of the manifold $\mathcal{M}$.

      The term variational in the name of the method comes from the fact that in practice one aims at minimising the right-hand side of Eq.~(\ref{eq:DiracFrenkel1}) to find $|\varphi\rangle$.

      Introducing $\hat{P}_{T_{|\varphi\rangle}\mathcal{M}}$ the projector onto the tangent space $T_{|\varphi\rangle}\mathcal{M}$, we can write the state $|\chi\rangle = \hat{P}_{T_{|\varphi\rangle}\mathcal{M}}|\phi\rangle$ with $|\phi\rangle$ a state in $\mathcal{H}$. Leading to

      \[ \forall |\phi\rangle \in \mathcal{H}, \ \langle\phi|\hat{P}_{T_{|\varphi\rangle}\mathcal{M}}\left(\frac{\mathrm{d}}{\mathrm{d}t} - \frac{1}{\mathrm{i}\hbar}\hat{H}\right)|\varphi\rangle =0\ .\]

      Because the time derivation and the projector commute, we have

      \[ \forall |\phi\rangle \in \mathcal{H}, \ \langle\phi|\left(\frac{\mathrm{d}}{\mathrm{d}t} - \frac{1}{\mathrm{i}\hbar}\hat{P}_{T_{|\varphi\rangle}\mathcal{M}}\hat{H}\right)|\varphi\rangle =0\ .\]

      This equation must be true for any $|\phi\rangle \in \mathcal{H}$, Eq.~(\ref{eq:DiracFrenkel1}) can thus be written

      \[ \left(\frac{\mathrm{d}}{\mathrm{d}t} - \frac{1}{\mathrm{i}\hbar}\hat{P}_{T_{|\varphi\rangle}\mathcal{M}}\hat{H}\right)|\varphi\rangle =0\ .\]

      In the context of MPS, the manifold $\mathcal{M}$ will correspond to the space of full-ranked MPS of a given bond dimension $D$, and the tangent space will be the space spanned by variations of single MPS tensors.

      The major advantage of this method is that it naturally preserves the unitarity of the time evolution and conserves the energy.

      Bibliography

      • chin_exact_2010

        Chin, A. W.; Rivas, Á.; Huelga, S. F.; Plenio, M. B. Exact Mapping between System-Reservoir Quantum Models and Semi-Infinite Discrete Chains Using Orthogonal Polynomials. Journal of Mathematical Physics 2010, 51 (9), 092109. https://doi.org/10.1063/1.3490188.

      • chin_role_2013

        Chin, A. W.; Prior, J.; Rosenbach, R.; Caycedo-Soler, F.; Huelga, S. F.; Plenio, M. B. The Role of Non-Equilibrium Vibrational Structures in Electronic Coherence and Recoherence in Pigment–Protein Complexes. Nature Phys 2013, 9 (2), 113–118. https://doi.org/10.1038/nphys2515.

      • alvertis_nonequilibrium_2019

        Alvertis, A. M.; Schröder, F. A. Y. N.; Chin, A. W. Non-Equilibrium Relaxation of Hot States in Organic Semiconductors: Impact of Mode-Selective Excitation on Charge Transfer. J. Chem. Phys. 2019, 151 (8), 084104. https://doi.org/10.1063/1.5115239.

      • dunnett_influence_2021

        Dunnett, A. J.; Gowland, D.; Isborn, C. M.; Chin, A. W.; Zuehlsdorff, T. J. Influence of Non-Adiabatic Effects on Linear Absorption Spectra in the Condensed Phase: Methylene Blue. J. Chem. Phys. 2021, 155 (14), 144112. https://doi.org/10.1063/5.0062950.

      • caycedosoler_exact_2022

        Caycedo-Soler, F.; Mattioni, A.; Lim, J.; Renger, T.; Huelga, S. F.; Plenio, M. B. Exact Simulation of Pigment-Protein Complexes Unveils Vibronic Renormalization of Electronic Parameters in Ultrafast Spectroscopy. Nat Commun 2022, 13 (1), 2912. https://doi.org/10.1038/s41467-022-30565-4.

      • orus_practical_2014

        Orus, R. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics 2014, 349, 117–158. https://doi.org/10.1016/j.aop.2014.06.013.

      • paeckel_timeevolution_2019

        Paeckel, S.; Köhler, T.; Swoboda, A.; Manmana, S. R.; Schollwöck, U.; Hubig, C. Time-Evolution Methods for Matrix-Product States. Annals of Physics 2019, 411, 167998. https://doi.org/10.1016/j.aop.2019.167998.

      • prior_efficient_2010

        Prior, J.; Chin, A. W.; Huelga, S. F.; Plenio, M. B. Efficient Simulation of Strong System-Environment Interactions. Phys. Rev. Lett. 2010, 105 (5), 050404. https://doi.org/10.1103/PhysRevLett.105.050404.

      • woods_simulating_2015

        Woods, M. P.; Cramer, M.; Plenio, M. B. Simulating Bosonic Baths with Error Bars. Phys. Rev. Lett. 2015, 115 (13), 130401. https://doi.org/10.1103/PhysRevLett.115.130401.

      • tamascelli_efficient_2019

        Tamascelli, D.; Smirne, A.; Lim, J.; Huelga, S. F.; Plenio, M. B. Efficient Simulation of Finite-Temperature Open Quantum Systems. Phys. Rev. Lett. 2019, 123 (9), 090402. https://doi.org/10.1103/PhysRevLett.123.090402.

      • dunnett_simulating_2021

        Dunnett, A. J.; Chin, A. W. Simulating Quantum Vibronic Dynamics at Finite Temperatures With Many Body Wave Functions at 0 K. Front. Chem. 2021, 8. https://doi.org/10.3389/fchem.2020.600731.

      • lacroix_unveiling_2021

        Lacroix, T.; Dunnett, A.; Gribben, D.; Lovett, B. W.; Chin, A. Unveiling Non-Markovian Spacetime Signaling in Open Quantum Systems with Long-Range Tensor Network Dynamics. Phys. Rev. A 2021, 104 (5), 052204. https://doi.org/10.1103/PhysRevA.104.052204.

      • appel_mathematics_2007

        Appel, W. Mathematics for Physics and Physicists; Princeton University Press, 2007.

      diff --git a/docs/user-guide/index.html b/docs/user-guide/index.html index e1eac75..8499ef8 100644 --- a/docs/user-guide/index.html +++ b/docs/user-guide/index.html @@ -34,4 +34,4 @@ "nchain" => [0.0 0.23466 … 1.84319 1.76098; 0.0 0.00231507 … 0.83105 0.9033… "sy" => [0.0, -0.0133489, -0.0588887, -0.0858181, -0.0759996, -0.048539… "times" => [0.0, 0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.00… - +